
4.3. Elliptic problems 55

4.3.2 Multigrid method

A very efficient way of solving the discretized Poisson equation is the multigrid method
which, together with the main grid, introduces a number of coarser grids, typically with
two, four, etc. times the grid spacing in each direction.

Consider the linear system (4.61). Under certain conditions (which are typically met), it
can be solved iteratively using

fk,l =
fk+1,l + fk−1,l + fk,l+1 + fk,l−1 − h2gkl

4
. (4.71)

There are two variants of this iteration scheme. For Jacobi iteration, at a given stage the
right hand sides are evaluated for all grid points and only then the values fkl are updated.
Convergence is two times faster with Gauss–Seidel iteration, where Eq. (4.71) is evaluated
for each point in sequence, using the latest updated values on the right hand side. Gauss–
Seidel iteration also requires only half the memory of Jacobi iteration and has the important
advantage of damping the highest wave number. This is the scheme we will consider here.

The iterative solution of Eq. (4.71) is quite slow. While the small scales (∼ δx) are quickly
converging, it is the largest scales that take very long to reach their ‘equilibrium’ values
due to the (local) iteration. For these large scales, however, one would not need the fine
grid, and on a coarser grid they would converge much faster. Hence the idea of multigrid
methods: Solve the problem iteratively on grids of different resolution by

1. coarse-graining (downsampling) using the restriction matrix R:

rcoarse = Rrfine , (4.72)

and

2. fine-graining (refining = interpolation), using the prolongation matrix P:

δffine = Pδfcoarse . (4.73)

A popular choice for the restriction matrix is represented by
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This matrix acts as a lowpass filter: signals at the Nyquist frequency fNy,fine of the fine
grid are completely filtered out, while signals at fNy,coarse are damped as little as possible.
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This is crucial for the scheme to be efficient, as any contribution of fNy,fine would only be
misinterpreted as a larger frequency on the coarser grid (aliasing).

The refinement is done using linear interpolation.

To see how the method works, consider the differential equation

L f = g , (4.74)

which, discretized at the grid spacing h, becomes

Lh fh = gh . (4.75)

If we have an approximate solution f̃h, we can introduce the error

δ fh = fh − f̃h , (4.76)

and find
− Lhδ fh = Lh f̃h − Lh fh = Lh f̃h − gh , (4.77)

i.e.
− Lhδ fh = rh , (4.78)

where rh ≡ Lh f̃h − gh is the residual, which is a measure of how well our approximate
solution f̃ solves the original problem.

Coarse-graining rh to the coarser grid with spacing H = 2h,

rH = Rrh , (4.79)

we arrive at
− LHδ fH = rH , (4.80)

which we solve (this is faster than on the finer grid) to obtain δ fH.

Then we fine-grain (interpolate) δ fH onto the finer grid,

δ f̃h = Pδ fH , (4.81)

and calculate the new value of f̃h as

f̃ new
h = f̃h + δ f̃h . (4.82)

Formulated as a recipe, this two-grid method reads:

0. Start with a guess f̃h on the fine grid (e.g. choose 0).

1. Calculate the residual rh = Lh f̃h − gh, and coarse-grain it, rH = Rrh.

2. Solve LH δ fH = −rH on the coarser grid, fine-grain the correction, δ f̃h = Pδ fH, and
add it to the initial guess. f̃ new

h = f̃h + δ f̃h.

3. Do one Gauss–Seidel iteration.

4. Continue with 1 until δ f̃h is small enough.

To turn this from a two- into a multi-grid method, we simply use another two-grid scheme
for obtaining δ fH at stage 2, etc. The best way to code a multigrid method is obviously
recursive.
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Note 1: The numerical cost for the multigrid method is roughly ∝ N = NxNy and thus
comparable to Fourier methods. However, multigrid methods can be used for equations
with variable coefficients and also for nonlinear equations.

Note 2: The multigrid scheme thus described is referred to as ‘V’ cycle (the name should
be evident from the scheme below). There are other popular cycles like the ‘W’ cycle.
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A ‘W’ cycle (many other W cycles exist).

4.4 Parabolic problems

The heat conduction equation
∂T
∂t
= χ

∂2T
∂x2 (4.83)

is the prototype of a parabolic differential equation. To solve it numerically, we need to
discretize in space and time:

Tl
k ≡ T(xk, tl) . (4.84)

Starting from an initial condition Tl
k, which we assume to be known everywhere, we need

to construct the solution at the next time, Tl+1
k .

4.4.1 Explicit scheme

A simple scheme is obtained from the discretization

Tl+1
k − Tl

k

δt
= χ

Tl
k−1 − 2Tl

k + Tl
k+1

δx2 . (4.85)

We can explicitly solve for the unknown Tl+1
k ,

Tl+1
k = Tl

k +
χ δt
δx2

(
Tl

k−1 − 2Tl
k + Tl

k+1

)
= CTl

k−1 + (1−2C)Tl
k + CTl

k+1 , (4.86)


