T NETINT

Quadra™
Integration & Programming Guide

V4.8.4

2024/4/15

Quadra Integration & Programming Guide

Table of Contents

" NETINT

1 (=Y o2 1o o o RS 5
2 Quadra Video ProCessing UNit........c.eoieieiieiiiieiieeeie ettt ettt ettt sit e st e saee e sateesaneesareesnneenas 6
3 Introducing Quadra Video Processing UNitS........ccueiiiiiiieiiiiiiieeiiie ettt 7
4 Ta 0= o o [Te I XU o [=T o ol ISP PRRTP PR 8
5 COMPATIDITIEY ¢ttt ettt ettt e st e et st e e bt e b e e s e e st e e eaneena 9
6 (oo Tole]) =T SRR POPPR 10
7 FFMpeg NETINT CommMand OpPtiONS.....c.uuiieiciiieeeiieeeceieee e siteeeesiee e e eetee e e staeeeearaeesensaeeesssseeeesseeesnnnes 11
7.1 D T=Tolo Yo L1 = SRR 11
7.2 ENCOTING .ttt ettt sttt st e et e bt b e e aee s eeneeeares 14
7.3 T SRR 16
7.4 Default FFMPEE Parametersc.eeeueeiiieeiierieeeiee sttt ettt st st e s 19
A R 2 1 - | (= PP PP UPP PR 19
7.5 NEeW FFMPEE PAarameters ...ccciiiiiiiiiiiiiiiiiiieeeieeeieeeeeeeeeeee e eeeeeeeeeeseeseeseseesesesesesesssesssesessnens 20
7.5.1 New advanced per-file OptioNS.........coccuiiiiiciiiicie e 20
7.5.2 Parameters for updating PMTooiiiiiiiiiiee ettt cttee et eaae e e s sare e e e ba e e eeaens 20
8 Y Tole o [T O T P P O S P TP U PO UPPRRRPPPPR 22
8.1 ENCOE OPLIONS ..ttt sttt sttt e st s b e st e s b e sabeeeneeearee 23
8.2 Block Level adjustment for Subjective Quality and/or Rate Controlcccceeeveeneeneen. 27
8.3 Objective Quality VS Performanceocueeieiiiieriiienieese et s 28
8.4 [aTolo o [T = q o= T =Y 0[] €= PP PP 29
8.4.1 LONG TErm REEIENCEuveeeetiee ettt e e aae e e s etae e e e atae e eenees 84
8.4.2 Reference INValidationcccuiirieiiiiiiiecie ettt e aees 87
8.4.3 GOP Pattern SetliNgS..cciv i 88
8.4.3.1 CuStom GOP STIUCLUIE...cciieieieiiieeee e 89
8.4.3.2 Pre-defined GOP STrUCLUIE.....cccueiiiiieiierieeeeee sttt 93
8.4.3.3 Description of GOP Patterns.........cceecieieviiieeeriieeseree e cieeeesee e eeveee e sereee e 97
8.4.4 CRF & Capped CRF EXaMPIES...cccciiiieieiieeecieeeesiteesetee e siee e e stte e e et e e s saaeee s snaeeeeas 103
8.4.5 ENCOder LiIMItatioNscccueiiiiiieieiiiie ettt ettt e ettt e e s s baeeeeas 104
9 (B =Tole Lo [T o P PP O P PP P PR PP P PUPUPRPPPPPRINS 106
9.1 DECOTET PAramELEIS...cccuviieeeiiite ettt sitte e ettt e et e e sttt e e e st e e s stbe e e sbbeeeesabaeeesasbeeesnnes 108
9.2 o Yo | (Vo - o1 4 A< P 125
10] =T PP TP PR PPTRPRTRPPO 127
10.1.1 Ve TUF: To [T o= 11 PP 130
10.1.2 Ve [UF: To [= e 1 VZ=1 o F- 1Y PP 136
10.1.3 (VI e [VE= Yo [= T o L] SR 140
10.1.4 (Yo [VETe [= Tl o] « FR SR 142
10.1.5 (Yo [VE=Te [= T o X- e IS SRR 145
10.1.6 Ni_quadra_hwUuploadcoovcieeriiiie e e 149
10.1.7 Ve TUF: e [T o S 151
10.1.8 LTI e TUF: e [T o =S 154
10.1.9 e LU To [T] - 1ol S 157
10.1.10 (Yo [VE Yo [T o] = 1< IO USRI 162
10.1.11 (Yo [VETe [= Mo [=11V o Jo GRS SUR S P 164
10.1.12 Ni_qQUAAra_draWteXE.......uuieiiiiiiciiiiee e e 166
10.1.13 (Yo [VE=Te [T o =4 S SRR 169

NETINT © 2024

Page 2 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.14 Ni_QUAAIA_ @I PIE eeiieieiiieeiee ettt sttt bee s e e nee s esnee e 171
10.1.15 Ni_qQUAAra_dlOZOeeuiieeiiieiiiieeiteetee ettt 173
10.1.16 Ve TUF: Te [= T ([T -SSP 174
11 Supported Versions Of FFMPEEeeiciii et stee et tre e e st e e s sttr e e s eaaaa e e satreeeenraeeennnes 175
12 AdVaNCed FEAtUIE SUPPOI....uuiieiiiieeeeiei e ettt e e ste e e ere e e ste e e e s teeessateeeessaeeeestseessnssasesnsseeeennsaeesnnsens 177
12.1 [| ST PO PP PSR PPRPRRPPIN 177
12.2 RegioN OF INTErESt (ROI) ..ciuvieeerieiieeeiieiieeete et et e st e ste e s e e s e e s teesaaeesareesaseesareesnneeses 180
12.2.1 SOfEWAIE FramME . eeeiiiiiiiie ettt ettt e et esaee e e sbaee e ssabaeesnanes 181
12.2.2 HardWare FIrameoeeeeeiee ettt st e e sbee e e e rata e s saaaee s sbaeeeens 181
12.2.3 ParamMELers ..o e e s e e e 182
12.2.4 7= 0] o] LTSRN 183
12.3 (01 [o 1Yo 07T o] To] o -3 PR 186
12.4 RATE CONTIOL. .uiiiiiiiiieieiee ittt sttt ettt sttt e sa e e st e e sa e e sabe e sabeesabeesabeesabeesasaesnneesns 187
12.5 User Data Unregistered SEI Passthrough..........cccccoiieiiiiiiiiiniiiiiceee e 189
12.6 IDR Fram@ FOICINGeeeiiiiiieiiiiit ettt s e s e s e e s 190
12.7 SEQUENCE CRANEE....eiiiiiiieeiee ettt ettt et e et st e e bt e st e e eabeesabeeeneesanes 191
12.7.1 (B =Tolo Lo =T TP SO PSPPSRI PUPPTOTPPPON 191
12.7.2 ENCOET ..ttt ettt st e e st e e et e e s eabaee e sbbeeeens 191
12.7.3 FFmpeg autoscale command line optioncccccuveieeiieeeciiie e, 191
12.8 SCTE 35 Cue OUt aNd CUE N .eiiiiiiiiiiiieeeiet ettt st sttt s e e e e e 192
13 (=Y o (oY 0 - [o] P SRSPRPPN 193
13.1 LOW Lat@nCY MOME ..coueeiiiiieiiieceteeet ettt sttt sttt st st e st e e sareesaneenas 193
13.1.1 3 Yol Yo 1T SRR 193
13.1.2 GOP Requirements to Minimize Encoder Latencyccocccevveeerieeneeenieenneen. 194
13.1.3 Encoder Low Latency MOdEcceiiiiiciiiiiieie et sane e e e 195
13.14 (D =Tole Lo [T o OO PSPPI PTSTOTRUPUPPOTPPPON 197
13.1.5 GOP Requirements to Minimize Decoder Latencycccccceeeeevciiiiieeeeeececnnnns 197
13.1.6 Decode Low Latency MOEcccuviieieiiee et see e eree e e eae e 198
13.1.7 Summary for Minimizing Lat@nCy......ccceeveierieiniieiieeiecrrcesee e 198
13.2 MEASUNING LATENCY ...eeeiiiiiieiiiiie ettt s e s e s e e s 199
13.2.1 Compiling the Latency Reporting Mechanismccccceevieenieenieenieennieenneen. 199
13.2.2 Running FFmpeg with low-delay mode encoder........cccoccvviveeeeiiiiiiiiineeee e, 200
13.2.3 LateNCY LOZS oo 200
13.2.4 Interpreting Latency RESUILScceiiiiiciiiiieeee e 201
13.2.5 Encoder Latency MeasuremMeNntcooccvviiieiee e et eesrre e e e e e 202
13.2.6 K¢l] o 1= OSSOSO PTOTON 202
13.2.7 Using libxcoder 1atency 108Scoeevuviiiieiee e 202
13.2.8 Build libxcoder With =p flag......ccoceveieieciee e 202
13.2.9 CollECt ELAT dat@...ciiiiiiieieiiiie ettt ettt s e e e sbeee e s sabeeeseanee 203
13.2.10 MEasUIre LatenCy ..cccoiiiiiiiiiic 204
13.2.11 Using fimpeg -debUg 1S ... 205
14 GStreamMer NETINT PlUSINS ...uuiiiieiiieiciiiieee e e ettt e e e e ettt e e e e e e e e tatr e e e e e e seaaataeeeeaeseanstaeeeeeeseannsanneas 207
141 GSErEAMEI=1.22.2 ...ttt e e e e e et e e e e 207
14.1.1 DYoo |1 =R 207
14.1.2 3 Yol Yo 1T o =R 208
14.1.3 B OIS ettt ettt ettt e naes 209
14.1.4 KNOWN ISSUBS. ettt ettt ettt ettt e e e s ettt e e e e e s e anbaeeeeeeeenaas 210
14.1.5 Supported Features of GSTreamMEercoeiiviiiiiiiee e 212

NETINT © 2024 Page 3 of 228

" NETINT
Quadra Integration & Programming Guide

15 Resource Managementcooiiiiiiiiiiiiiiiii e e e 214
15.1 TranSCOAING RESOUICTESeeeuiiiiiiiiieeiit ettt ettt ettt sbee s e s st e s b e eneesans 214
15.2 Device Load and Software Transcoding INSTaNCecceeevviieeeecieee i 214
15.3 Resource Distribution Strategycceveiuiieeeiiiie e e e 215

15.3.1 7= 0] o] LT3R 215
15.4 NETINT Command-Line Interface (CLI)cocccveeieciee et e e 216
15.5 NVIME SIMART LOE ..ttt ettt ettt e e e e e sttt e e e e e s b e e e e e e e senbnaaeaeeeeeas 219
15.6 DEVICE TEMPEIATUIE ..cciiiiiiiiiiiie ettt s e e s s enr e s 220

15.6.1 Warning Temperature and Throttlingcc.ccceeveeiiiiiiiniienie e 220

15.6.2 Critical Temperature and DeViCe RESELccccveeiiiuiieeeiiiieeeree et eeseee s 220
15.7 T U ol oo o M\ - o F= = o 1 =T o P 221
15.8 Thread Management and KEEP AlIVEccccuuvieieciee et et ere e e s 222

16 (=] o0 =4 =4 o = PSRRI 223
16.1 NETINT Codec Library DEDUE LOGceeiuveeriieriieiniiieriieeeeee sttt s 223

17 DEPrecated ParamEtErS. . ..c.eiiiii ettt ettt sttt ettt e et s bt e e sbee sttt s bt e s bt e bt e sb e e e sareenneeesaneenneeas 224
17.1 Backward Compatibility......coocueiiiiiiiiiie e 224
17.2 List of Deprecated Parameterseeciuieeeecieee ettt et e et e e ete e e e e are e e earae e eanes 224

18 B o101 o] 1=1 o Vo Yo i1 V- PR SUPURNE 225
18.1 Performance Is Lower than eXpected.......cccccuveiieiiiiiiiiiee et 225
18.2 ComMPIlAtioN FAIIUIESeeeeiiiieeee ettt et e e e e et e e e abae e e s ta e e e estaeeennees 226

18.2.1 FFMpeg Compilation fails with Quadra and CUDAcccceeveieniernereneeeee. 226

19 FA o Y=LV - 14 [0 o T3PPSR 227

NETINT © 2024 Page 4 of 228

" NETINT
Quadra Integration & Programming Guide

1 Legal Notice

Information in this document is provided in connection with NETINT products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document. Except as provided in NETINT’s terms and conditions of sale for such products,
NETINT assumes no liability whatsoever and NETINT disclaims any express or implied warranty,
relating to sale and/or use of NETINT products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright or other
intellectual property right.

A "Mission Critical Application" is any application in which failure of the NETINT Product could
result, directly or indirectly, in personal injury or death. Should you purchase or use NETINT’s
products for any such mission critical application, you shall indemnify and hold NETINT and its
subsidiaries, subcontractors and affiliates, and the directors, officers, and employees of each,
harmless against all claims costs, damages, and expenses and reasonable attorney’s fees arising
out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any
way out of such mission critical application, whether or not NETINT or its subcontractor was
negligent in the design, manufacture, or warning of the NETINT product or any of its parts.

NETINT may make changes to specifications, technical documentation, and product descriptions
at any time, without notice. The information here is subject to change without notice. Do not
finalize a design with this information. The products described in this document may contain
design defects or errors known as errata which may cause the product to deviate from published
specifications.

NETINT, Codensity, and NETINT Logo are trademarks of NETINT Technologies Inc. All other
trademarks or registered trademarks are the property of their respective owners.

© 2024 NETINT Technologies Inc. All rights reserved.

NETINT © 2024 Page 5 of 228

" NETINT
Quadra Integration & Programming Guide

2 Quadra Video Processing Unit

NETINT is a supplier of high-performance, low-latency, real-time video processing units (VPUs)
for x86 and ARM servers.

NETINT provides multiple stream transcoding functions and services directly to video content
providers, and Transcoding as a Service (TaaS) providers, for integration into their video
streaming systems and services.

NETINT’s functions and services can be used for highly efficient Video-on-Demand file
transcoding, as well as real-time live video streaming applications.

This guide provides an overview of NETINT Quadra video transcoding solution parameters, and
the ways in which they can be used when integrating and managing transcoding into a
customer's transcoding workflow.

NETINT © 2024 Page 6 of 228

" NETINT
Quadra Integration & Programming Guide

3 Introducing Quadra Video Processing Units

Quadra has 4 encoder cores that support H.264/H.265/AV1 and JPEG. There are also 4 decoder
cores that support H.264/H.265/VP9 and JPEG.

A PCle Gen4 x4 interface provides high speed connectivity to the host, with up to 6 GB/s of data
in each direction. This allows the host to transfer to Quadra up to 10 bit YUV 8k@60fps. Low
speed connectivity is provided by 2x 12C, SPI, UART, GPIO, and JTAG.

Quadra also has a 2D Engine that contains 4 GPUs. Each GPU is capable of many types of
operation on raw video input. Some supported operations are
e Scaling
e Cropping
e Video overlay
o Video format conversion
o Drawing box

o Rotation

Future improvements to the 2D Engine will also add support for Line drawing.

An audio block is available within Quadra, comprising of 2x DSP audio processors. These are now
capable of additional, general-purpose processing, to enhance transcoding performance.

Quadra also has 2 Deep Neural Network processing blocks containing its Al engine. The Al engine
is capable of 18 Trillion Operations Per Second (TOPs) for typical DNN operations, such as

e Object detection
e (lassification

e Segmentation

One application of the Al engine is to provide region of interest (ROI) information to the encoder.
The ROl is a dynamic, Al selected, area of a frame that can be used by the encoder to improve
image quality. Another Quadra Al use case is background replacement, this is where the
background of a video is replaced with another, static background.

NETINT © 2024 Page 7 of 228

" NETINT
Quadra Integration & Programming Guide

4 Intended Audience

This document is intended to assist developers when integrating Quadra into their own media
systems and workflows. It is also a reference guide for customers who are directly using NETINTs
video utility programs and servers.

NETINT © 2024 Page 8 of 228

" NETINT
Quadra Integration & Programming Guide

5 Compatibility

Software Compatibility

This guide is intended to be used with Quadra Video Transcoder Release 4.8.4.

Hardware Compatibility

Quadra Release 4.8.4, and this guide supports all Quadra Video Transcoder hardware.

System Compatibility
The Recommended System for Quadra is detailed in the Quadra Quick Start Guide, see section
2.4 Hardware Installation.

NETINT © 2024 Page 9 of 228

¢ NETINT
Quadra Integration & Programming Guide

6 Protocol Stack

The following diagram is a high-level block view of the entire Quadra software stack.

Application software can access Quadra’s video encoding, decoding and 2D processing services,
through either high level FFmpeg plugins (libavcodec and libavfilter), through GStreamer, or
directly interfacing through the low-level API library, libxcoder.

The libxcoder library also provides an API to the Quadra Deep Neural Network services.

NETINT © 2024

Video Application Code

FFmpeg

libavcodec libavfilter GStreamer

Quadra API

libxcoder

NVMe Driver

Quadra Firmware

Figure 1 Quadra Software Block Diagram

Page 10 of 228

" NETINT
Quadra Integration & Programming Guide

7 FFmpeg NETINT Command Options

7.1Decoding

The list of FFmpeg NETINT command options for decoding can be shown with this command:

‘ ffmpeg -help decoder=<ni_dec_name>]

<ni_dec_name> options are:

e h264_ni_quadra_dec
e h265_ni_quadra_dec
e vp9_ni_quadra_dec

e jpeg_ni_quadra_dec

The above names are for NETINTs AVC, HEVC, VP9 and JPEG decoding respectively.

NETINT © 2024 Page 11 of 228

" NETINT
Quadra Integration & Programming Guide

Example:

$ ffmpeg -hide_banner -help decoder=h264_ni_quadra_dec

Decoder h264 ni quadra dec [H.264 NetInt Quadra decoder v—---6ADEV]:
General capabilities: delay avoidprobe hardware
Threading capabilities: none
Supported hardware devices: ni gquadra
Supported pixel formats: yuv420p nvl2 yuv420plOle p0l0le ni quadra
h264 ni quadra dec AVOptions:

-xcoder <string> .D.V.oLoo... Select which XCoder card to

use. (default "bestmodelload")

bestmodelload D VA Pick the least model load
XCoder/decoder available.

bestload DV, Pick the least real load
XCoder/decoder available.

-dec <int> .D.V.o..... Select which decoder to use
by index. First is 0, second is 1, and so on. (from -1 to INT MAX)
(default -1)

-decname <string> D.VeLoL. Select which decoder to use
by NVMe block device name, e.g. /dev/nvmeOnl.

-user data sei passthru <boolean> .D.V...... Enable user data
unregistered SEI passthrough. (default false)

-custom sei passthru <int> .D.V...... Specify a custom SEI type
to passthrough. (from -1 to 254) (default -1)

-xcoder-params <string> .D.VoLoLoLL. Set the XCoder configuration
using a :-separated list of key=value parameters.

-keep alive timeout <int> .D.V...... Specify a custom session
keep alive timeout in seconds. (from 1 to 100) (default 3)

-low delay <int> D.V.oLoo... Enable low delay decoding
mode for 1 in, 1 out decoding sequence. set 1 to enable low delay mode.
Should be used only for streams that are in sequence. (from 0 to 1)
(default 0)

NETINT © 2024 Page 12 of 228

" NETINT
Quadra Integration & Programming Guide

Arguments:

xcoder: specifies which type of load is used to determine the XCoder card to use, model load or
real load.

Default: bestmodelload, instructs the system to use the decoder with the least model load
dec: specific decoder index to assign to the decoding instance

Default: -1 instructs the system to use the least loaded decoder

decname: NVMe block device name, e.g. /dev/nvmeOn1 to assign to the decoding instance.
When specified this takes precedence over dec.

user_data_sei_passthru: enables user data unregistered SEl passthrough. See the User data
Unregistered SEI passthrough Application Note for more details.

custom_sei_passthru: specifies a custom SE| payload to passthrough. See the Custom SEI
passthrough Application Note for more details.

xcoder-params: specifies the decoding configuration, using a separated list of key=value
parameters. See Section 9 for more details.

keep_alive_timeout specifies a session keep-alive timeout value. This is a periodical
request/response between libxcoder and the XCoder firmware, when this times out, the
decoding instance on the decoder will be terminated by the XCoder firmware. Valid range is from
1-100, inclusive. This option is overwritten if a keepAliveTimeout option is specified in the
xcoder-params.

low_delay enables low delay decoding mode for 1 in, 1 out, decoding sequence. This should only
be used for streams that are encoded in sequence. If out-of-sequence stream is paired with low

delay, longer input buffering may occur and output display order will also be out-of-sequence.

Decoding command example with decoder index specified as 0:

ffmpeg -y -hide banner -nostdin -vsync 0 -c:v h264 ni quadra dec -dec
0 -i ../libxcoder/test/akiyo 352x288p25.264 -c:v rawvideo output 5.yuv

NETINT © 2024 Page 13 of 228

" NETINT
Quadra Integration & Programming Guide

7.2 Encoding

FFmpeg NETINT command options for encoding can be seen using the following command:
ffmpeg -help encoder=<ni_enc_name>

<ni_enc_name> options are:

e h264 _ni_quadra_enc
e h265 ni_quadra_enc
e qavl ni_quadra_enc
e jpeg ni_quadra_enc

These names are for NETINT AVC, HEVC, AV1 or JPEG encoder respectively.

Example:

$ ffmpeg -hide banner -help encoder=h265 ni_ quadra_ enc

Encoder h265 ni quadra enc [H.265 NetInt Quadra encoder v—--—-6ADEV]:
General capabilities: delay
Threading capabilities: none
Supported hardware devices: ni quadra ni quadra ni quadra ni quadra
ni guadra
Supported pixel formats: yuv4d20p yuvjd420p yuv420plOle nvl2 p0l0le
ni guadra
h265 ni quadra enc AVOptions:

-xcoder <string> E..V...... Select which XCoder card to

use. (default "bestmodelload")

bestmodelload E..V...... Pick the least model load
XCoder/encoder available.

bestload E..V...... Pick the least real load
XCoder/encoder available.

-enc <int> E..V...... Select which encoder to use
by index. First is 0, second is 1, and so on. (from -1 to INT MAX)
(default -1)

—-encname <string> E..V...... Select which encoder to use
by NVMe block device name, e.g. /dev/nvmeOnl.

-iosize <int> E..V...... Specify a custom NVMe IO
transfer size (multiples of 4096 only). (from -1 to INT MAX) (default -1)

-xcoder-params <string> E..V...... Set the XCoder configuration
using a :-separated list of key=value parameters.

-xcoder—-gop <string> E..V...... Set the XCoder custom gop
using a :-separated list of key=value parameters.

-keep alive timeout <int> E..V...... Specify a custom session
keep alive timeout in seconds. (from 1 to 100) (default 3)

NETINT © 2024 Page 14 of 228

" NETINT
Quadra Integration & Programming Guide

Arguments:

xcoder: specifies which type of load is used to determine the XCoder card to use, model load or
real load.

Default: bestmodelload, instructs the system to use the encoder with the least model load

enc assigns the encoding instance to a specific encoder by its index. The default value is -1. If the
input is a hardware frame, the encoding instance will be placed on the same device as the
hardware frame. If the input is a software frame the encoding instance will be placed on the
least loaded encoder.

encname assigns the encoding instance to a specific decoder by its NVMe block device name,
e.g. /dev/nvmeOnl. When specified, this takes precedence over enc.

iosize specifies a custom NVMe I/0 transfer size.

xcoder-params specifies the encoding configuration using a separated list of key=value
parameters. See section 8.4 for more details.

xcoder-gop specifies a custom GOP for encoding using a separated list of key=value parameters.
See section 8.4 for details.

keep_alive_timeout specifies a session keep alive timeout value. This is a periodical
request/response between libxcoder and XCoder firmware that when timed out, the encoding
instance on the encoder will be terminated by the XCoder firmware. Valid range is from 1-100,
inclusive. This option is overridden if the keepAliveTimeout option is specified in the xcoder-
params.

Encoding command example using default least model load encoder placement:

ffmpeg -y -hide banner -nostdin -f rawvideo -pix fmt yuv420p -
s:v 352x288 -r 25 -i ../libxcoder/test/akiyo 352x288p25.yuv -
c:v h264 ni quadra enc output 7.h264

Transcoding example using default least model load decoder and encoder placement:

ffmpeg -y -hide banner -nostdin -vsync 0 -c:v
h264 ni quadra dec -

i ../libxcoder/test/1280x720p Basketball.264 -c:v
h265 ni quadra enc output 9.h265

NETINT © 2024 Page 15 of 228

" NETINT
Quadra Integration & Programming Guide

7.3 Filters

FFmpeg NETINT command options for filtering are shown with the following command:

‘ ffmpeg -help filter=<ni_{filter_name>

<ni_filter_name> options for NETINT filters are:

® ni_quadra_scale

e nj_quadra_overlay
e ni_quadra_split

e nj_quadra _crop

e ni_quadra_pad

e ni_quadra_hwupload
e ni_quadra_roi

e ni_quadra_xstack

e ni_quadra_bg

e nj_quadra_rotate

e ni_quadra_drawbox
e nj_quadra_drawtext
e ni_quadra_ai_pre

e ni_quadra_delogo

e nj_quadra_merge

NETINT © 2024 Page 16 of 228

" NETINT
Quadra Integration & Programming Guide

Example:

$ ffmpeg -hide banner -help filter=ni_ quadra_scale

Filter ni quadra scale
NetInt Quadra video scaler v---64DEV
Inputs:
#0: default (video)
Outputs:
#0: default (video)
ni scale AVOptions:

W <string> .LEVLL L. Output wvideo width
width <string> LLEVLL L Output video width
h <string> LEVLLL L. Output video height
height <string> LLEVLL L Output video height
force original aspect ratio <int> CEVLLL L. decrease

or increase w/h if necessary to keep the original AR (from 0 to
2) (default disable)

disable LBV L.
decrease LBV L.
increase LBV L.
format <int> LGBV set output format
(from 0 to 13) (default auto)
yuv420p 0 LEVL L.
yuyv4az?2 1 FV.....
uyvy422 2 FV.....
nvl2 3 FV.....
argb 4 FV.....
rgba 5 FV.....
abgr 6 FV.....
bgra 7 EV.....
yuv420pl0le 8 LCEVLOLLL.
nvlo 9 LEVL L.
bgr0 10 LCEVLLL L
p0101le 11 LCEVLLL L
bgrp 12 LCEVLOLLL.
auto 13 LEVL L.
force divisible by <int> LLEVLLL L. enforce that the
output resolution is divisible by a defined integer when
force original aspect ratio is used (from 1 to 256) (default 1)
filterblit <boolean> LLEVL L. filterblit enable
(default false)
keep alive timeout <int> LLCEVL L. Specify a custom
session keep alive timeout in seconds. (from 1 to 100) (default

3)

NETINT © 2024 Page 17 of 228

" NETINT
Quadra Integration & Programming Guide

Arguments:

w is width to scale up/down to.
h is height to scale up/down to.

force_original_aspect_ratio maintains the input video’s aspect ratio when scaling.

format sets the pixel format of the output video.
force_divisible_by will force the output resolution to be divisible by the defined integer

filterblit when true enables an FIR filter, it will produce better quality but at a lower
perfromance than the default modified Bresenham filter.

keep_alive_timeout specifies a session keep-alive timeout value. This is a periodic
request/response between the libxcoder and the Quadra firmware. When this times-out, the
firmware will terminate the filtering instance on the scaler. The Valid range is from 1 to 100
(inclusive).

Filter command example:

ffmpeg -c:v h264_ni_quadra dec -dec 0 -xcoder-params “out=hw” -
i inputl080p.264 -vf ni_ quadra scale=1280:720 -c:v

h265 ni_quadra enc -enc -1 -xcoder-params
“"RcEnable=1:bitrate=1000000” output720p.265

NETINT © 2024 Page 18 of 228

" NETINT
Quadra Integration & Programming Guide

7.4 Default FFmpeg Parameters

Some FFmpeg parameters may also override explicit libxcoder parameters. Try to avoid using multiple
parameters that control the same behavior.

7.4.1 Bitrate

If the FFmpeg -b argument is specified on the command line then this will set the bitrate, and will override
any libxcoder bitrate parameter.

There are 4 situations for bitrate, these are

1. No bitrate is specified on the command line, therefore the default bitrate will be used. This is
200,000 — see the RCEnable parameter in Section 9.4. Note this only applies when RCEnable =1.

2. If only the FFmpeg -b command is specified then this will set the bitrate.
3. If only the libxcoder command -xcoder-params is specified then this sets the bitrate.

4. If both the FFmpeg -b and the xcoder parameters are specified then the FFmpeg parameter will
take priority and set the bitrate.

NETINT © 2024 Page 19 of 228

" NETINT
Quadra Integration & Programming Guide

7.5New FFmpeg Parameters

The following FFmpeg parameters are designed to simplify the integration of Quadra with FFmpeg.

7.5.1 New advanced per-file options
force_nidec: This parameter forces the selection of Netint HW decoders
Supported values:
logan

guadra

The format of the input streams does not need to be specified as FFmpeg will automatically
detect all the input stream formats.

Command Example:

Force select Quadra h265_ni_quadra_dec decoder

ffmpeg -y -hide banner -nostdin -vsync 0 -force nidec quadra -
xcoder-params "out=sw" -i input.265 -c:v rawvideo output.yuv

7.5.2 Parameters for updating PMT

The PMTs provide information on each program present in the transport stream, including
the program_number, and list the elementary streams that comprise the MPEG-2 program.
Quadra provides a feature to update maximum bitrate descriptors in PMT:

mpegts_max_bitrate: The value indicates an upper bound of the total bitrate, including
transport overhead, that will be encountered in this program element or program.

mpegts_max_video_bitrate: The value indicates an upper bound of the video bitrate.

mpegts_max_audio_bitrate[N]: The value indicates an upper bound of the bitrate for audio
track N. [N] is an audio track number and should be replaced with the supported range between
0 and 9. (i.e. mpegts_max_audio_bitrate0 needs to be used for audio track 0.)

Supported values:

NETINT © 2024 Page 20 of 228

" NETINT
Quadra Integration & Programming Guide

Up to 1600000000 in the unit of bit per second

Command Example:

Set PMT with maximum bitrate to 32 Mbps, maximum video bitrate to 16 Mbps, maximum audio
bitrate of track 0 to 64000 bps, maximum audio bitrate of track 1 to 56000 bps, and maximum
audio bitrate of track 2 to 48000 bps if source.ts contains 1 video stream and 3 audio streams.

ffmpeg -y -hide banner -nostdin -vsync 0 -i source.ts -map 0:v
-c:v copy -map 0:a:0 -c:a:0 copy -map 0:a:1 -c:a:1 copy -map
0:a:2 -c:a:2 copy -mpegts max bitrate 32000000 -
mpegts max video bitrate 16000000 -mpegts max audio bitrate0
64000 -mpegts _max audio

_bitratel 56000 -mpegts max audio bitrate2 48000 -f mpegts
test. ts

NETINT © 2024 Page 21 of 228

" NETINT
Quadra Integration & Programming Guide

8 Encoder

The following NETINT encoders all use Quadra hardware to perform encoding.

h264 ni_quadra_enc

h265_ni_quadra_enc

e avl ni_quadra_enc

jpeg_ni_quadra_enc

The encoder supports 8 or 10 bit YUV 420 for encoding in planar and semi-planar. The encoder
also supports encoding 8 bit with a 10 bit input. Note that JPEG supports 8 bit baseline encoding
only. Lossless and progressive encoding are not supported. JPEG encoding accepts only inputs
with full color range.

NETINT © 2024 Page 22 of 228

Quadra Integration & Programming Guide

8.1Encode Options

¢ NETINT

The following Quadra encoder options affect compression efficiency (quality) and performance

e RDOQ tunes every non-zero coefficient to find a better tradeoff between rate and
distortion. It can therefore improve the compression efficiency (quality) but with a
penalty on performance. RDOQ is enabled when enableRdoQuant is set to 1.

e RDO Level. When the RDO level increases, the encoder selects more candidates during
each mode selection stage, with an RD cost. Therefore, the overall quality will be
increased but with a penalty on performance. Please refer to section “8.4 - Encoding
Parameters” for a description of the rdoLevel parameter.

The following table shows the performance penalty when using RDQQ and RDO level. Please
note that this table only provides a general guideline, the actual performance impact will vary
depending on the encoder load (resolution, parallel jobs, etc.)

RDO L1 as an anchor

Performance cycles ratio

rdo |1 Ix

rdo |2 2x
h265 rdo 13 3.dx

rdog-+rdo 11 1.5x

l'(luq +rdo 13 5x

rdo 11 Ix
h264

rdog + rdo 11 1.7x

The following table shows RDOQ and RDO Level availability for each codec

2k [wOlevel |woon |

NETINT © 2024

Page 23 of 228

" NETINT
Quadra Integration & Programming Guide

e Lookahead improves encoding quality by 2-pass encode, the 1 pass (lookahead pass)
analyzes the cost and reference dependency at a macroblock level to improve 2™ pass
encode compression efficiency (quality), with a penalty on performance. Lookahead is
enabled when the lookaheadDepth parameter is set to a value >= 4, please refer to
section “8.4 - Encoding Parameters” for a description of lookaheadDepth parameter.

e Multicore Joint Mode improves the high resolution encode performance by utilizing all
4 hardware cores in parallel to encode. Please note when running multiple encoding
instances in parallel, that this mode will not improve performance, since parallel
instances already utilize multiple hardware cores. This affects rate control negatively
because rate control will not be able to make any adjustment until 4 frames later
(encoded in parallel), and therefore this may have a penalty on the compression
efficiency (quality). Multicore joint mode is enabled when the multicoreJointMode
parameter is set to 1.

e GOP preset specifies the GOP structure used for encoding. GOP preset is selected by
setting the gopPresetldx parameter, please refer to section “8.4 - Encoding Parameters”
for a list of GOP preset indices. For a low delay application, the recommended GOP
preset is 9 (all P-frames). For the highest quality, the recommended GOP preset is —1
(adaptive GOP, where the firmware dynamically adjusts the GOP pattern), this is also the
default GOP preset setting. Please refer to section “8.4.3 - Gop Pattern Setting” for
details of each GOP preset index. The user is also allowed to specify a customized GOP
pattern by setting the GOP preset 0 (custom GOP) with a set of GOP structure syntax,
please refer to section “8.4.3.1 - Custom Gop Structure". It is generally not required and
not recommended to use a customized GOP pattern, since GOP preset patterns are
usually a better choice. Custom Gop patterns should only be used if you cannot find an
appropriate GOP preset for you application

e CBR (Constant Bitrate) rate control mode is enabled when the VBV buffer size is a non-
zero value (default VBV buffer size is 3000), please refer to section “8.4 - Encoding
Parameters” for a description of vbvBufferSize parameter. In CBR mode, rate control is
bound by the VBV buffer constraint, and therefore the instant bitrate will be limited and
more stable.

o Please also note when cuLevelRCEnable is 1 (enable block level rate control),
and lookaheadDepth is 0 (no lookahead), rate control handles user specified
bitrate as maximum bitrate or average bitrate depending on bitrateMode
parameter, please refer to bitrateMode parameter descriptions for details.

NETINT © 2024 Page 24 of 228

" NETINT
Quadra Integration & Programming Guide

o ABR (Average Bitrate) rate control mode is enabled when VBV buffer size and
vbvMaxRate are both set to 0, please refer to section “8.4 - Encoding Parameters” for
description of vbvBufferSize and vbvMaxRate parameter. In ABR mode, rate control
maintains average bitrate to match target bitrate, but is not constrained by VBV buffer,
and therefore instant bitrate may have more fluctuations compared to CBR. On the
other hand, ABR may produce bitrate more closely matching the target bitrate.

e Constrained VBR (Constrained Variable Bitrate) rate control mode is enabled when both
the VBV buffer size and VBV max rate are non-zero value (default VBV buffer size is 3000,
default VBV max rate is 0 (disabled)), please refer to section “8.4 - Encoding Parameters”
for description of vbvBufferSize and vbvMaxRate parameters. Compared to CBR mode,
Constrained VBR mode allows higher instant bitrate, and therefore may produce higher
quality at the cost of higher peak rate.

e CRF (Constant Rate Factor) mode is enabled when crf parameter is set to value ranging
from 0 to 51, and the recommended value is 23. Please refer to section “8.4 - Encoding
Parameters” for description of CRF parameter. In CRF mode, bitrate is not maintained,
instead encoder attempts to maintain constant subjective quality. CRF mode is generally
used to encode video for offline file storage.

e Capped CRF mode is enabled when crf parameter is set together with bitrate,
vbvBufferSize, vbvMaxRate (optional), vbvMinRate (optional) to ensure a consistent
quality level, while the maximum (and minimum) bitrate cap prevents the bitrate from
exceeding a certain threshold, please refer to section “8.4 - Encoding Parameters” for
description of these parameters. In Capped CRF mode, bitrate is capped by maximum
(and minimum) limit. Therefore, although the encoder attempts to maintain consistent
subjective quality, it is also required to adjust quality to meet the bitrate limit, and
therefore consistent quality is no longer guaranteed. On the other hand, Capped CRF
brings the benefit of bitrate control on top of CRF mode. Capped CRF mode is generally
used for live streaming.

e HVS improves subjective quality by adjusting the macroblock level quantization
parameter, according to human visual heuristics, but usually this reduces the objective
quality. HVS is enabled when hvsQPEnable parameter is set to 1.

e CU Level Rate Control is finer granularity macroblock level rate control, which may
improve compression efficiency (quality). CU level rate control is enabled when
culLevelRCEnable parameter is set to 1.

¢ Tolerance of Rate Control for Inter/ Intra defines how much tolerance is given to CU
level rate control to match target picture size, please refer to section “8.4 - Encoding
Parameters” for description of tolCtbRcInter / tolCtbRcIntra parameters. A smaller value
means less tolerance, in which case CU level rate control will make drastic adjustments

NETINT © 2024 Page 25 of 228

" NETINT
Quadra Integration & Programming Guide

at macroblock level trying to match target size. It is recommended to keep the default
tolerance value.

e Rate Control QP Delta Range defines the range of quantization parameters CU level rate
control is allowed to operate with, please refer to section “8.4 - Encoding Parameters”
for description of rcQpDeltaRange parameter. A larger value means CU level rate is
allowed to increase or decrease QP by larger delta value at macroblock level. It is
recommended to keep the default QP delta range value.

e Bitrate Window is the window of frames in which rate control attempts to match the
target bitrate, please refer to section “8.4 - Encoding Parameters” for a description of
the bitrateWindow parameter. By default, the bitrate window is equal to the intra
period, or 150 if the intra period is 0 (only encode first frame as I-frame). It is
recommended to keep the default bitrate window value.

e CTB Row QP Step defines the maximum accumulated QP adjustment step per CTB Row
allowed by CU level rate control, please refer to section “8.4 - Encoding Parameters” for
description of ctbRowQpStep parameter. A larger value means CU level rate is allowed to
increase or decrease QP by larger delta value per MB / CTB row. It is recommended to
keep the default QP step value.

NETINT © 2024 Page 26 of 228

" NETINT
Quadra Integration & Programming Guide

8.2 Block Level adjustment for Subjective Quality and/or Rate Control

Subjective video quality can be enhanced by tuning QP at the block level, this can be
enabled/disabled by the hvsQPEnable parameter. The block is the CTB (coding tree block) for
H.265, MB (macroblock) for H.264 and the superblock for AV1. Block level rate control can also
be enabled/disabled by the cuLevelRCEnable parameter. Applications can enable both
parameters to enable subjective video quality adjustment, and also the block level rate control,
at the same time.

hvsQPEnable = 0 & cuLevelRCEnable = 0: Default settings. Disable CTB QP adjustment.

hvsQPEnable = 1: Block level QP adjustment for Subjective Quality only

HVS QP will adjust the QP according to the block complexity of the input image. To follow the
sensitivity of the Human Eye system for high complex blocks, the QP will have a small increase;
for flat content blocks, the QP will have a small decrease. The method may cause a small
decrease in objective quality, or much deviation on the final encoded bit rate.

culLevelRCEnable = 1: Block Level QP adjustment for Stable Bit Rate Control only

In this mode, the rate control will try to control current frame bits within the target range by
adjusting the block QP. This mode will have a more stable bit rate.

hvsQPEnable = 1 & culLevelRCEnable = 1: Block level QP adjustment for both Subjective Quality
and Bit Rate Control

NETINT © 2024 Page 27 of 228

" NETINT
Quadra Integration & Programming Guide

8.3 Objective Quality vs Performance

There is a trade-off between Objective Quality and Encoder Performance. Using the rdoLevel
and enableRdoQuant parameters this trade-off can be adjusted.

The rdoLevel specifies the number of candidates to use for Rate Distortion Optimization. RDO is
a method for improving video quality during compression. Lower RDO values will generate lower
quality, but performance is improved. Higher RDO values will generate higher quality, but again,
this will cause lower performance. Similarly, enableRdoQuant specifies whether to enable or
disable the RDO Quantization.

NETINT © 2024 Page 28 of 228

" NETINT
Quadra Integration & Programming Guide

8.4 Encoding Parameters

Syntax and Conformance

level

Sets the level for encoding. If level=0 the encoder will automatically determine the level
based on picture size, frame rate and bitrate. If specified, the level will be used.

When a non-zero level is specified, the encoder will use it regardless of the encoder
parameters.

Not Applicable: JPEG

Supported Values:

Decimal values from 0 to 9.9 in 0.1 increments

H.264 levels: 1,1.1,1.2,1.3,
2,2.1,2.2,
3,3.1,3.2,
4,4.1,4.2,
5,5.1,5.2,
6,6.1,6.2

H.265 levels: 1,2, 2.1,
3,3.1,
4,41,
5,5.1,5.2,
6,6.1,6.2

AV1 levels: 2.0, 2.1,
3.0,3.1,
4.0,4.1,
5.0,5.1

Default: 0

NETINT © 2024 Page 29 of 228

Quadra Integration & Programming Guide

profile

" NETINT

Sets the profile for encoding. The valid profiles for H.264 and H.265 are shown below.

Any profile can be used for 8 bit encoding, but only the 10 bit profiles (main10 for H.265
and high10 for h.264) may be used for 10 bit encoding.

NOTE - For the H.264 baseline, the GOP must not contain any B frames, therefore the
only supported values for gopPresetldx are 1, 9, 10 or 0 (custom GOP with picType != 3)

Not Applicable: JPEG

Supported Values:

Default:

NETINT © 2024

H.265:

H.264:

AV1:

H.265:

H.264:

AV1:

1=main (8 bit default)
2= mainl0 (10 bit default)

1=baseline (not compatible with B frames)
2=main

4=high (8 bit default)

5= high10 (10 bit default)

1=main (8 bit and 10 bit default)

1=main (8 bit default)
2=mainl0 (10 bit default)

4=high (8 bit default)
5= high10 (10 bit default)

1=main (8 bit and 10 bit default)

Page 30 of 228

Quadra Integration & Programming Guide

high-tier

Sets the tier for AV1 and H.265 encoding.

NOTE -

High tier only takes effect if the current level supports it.

Not Applicable: JPEG and H.264

Supported Values:

Default:

hrdEnable

0: Main tier
1: High tier

0 for H.265
1 for AV1

Enable hypothetical reference decoder (HRD) compliance.

When enabled this parameter will:

PWNPE

NOTE —

Update the HRD parameters in the VUI

Send the pic timing sei messages in the bitstream

Send the buffering period sei messages in the bitstream
Automatically set RcEnable = 1 if RcEnable is not already enabled

hrdEnable is automatically enabled when dolbyVisionProfile = 5

Not Applicable: JPEG and AV1

Supported Values:

0: Disable
1: Enable

Default:

NETINT © 2024

0: Disable

" NETINT

Page 31 of 228

" NETINT
Quadra Integration & Programming Guide

enableAUD

Specifies whether to include Access Unit Delimiters (AUD) or not.
Required For:

AUDs are required for DolbyVision compatibility, or when placing bitstreams in
transport streams.

Not Applicable: JPEG and AV1
Supported Values:

0: Disable
1: Enable

Default:
0: Disable

dolbyVisionProfile

Configures the Netint encoder as a 3rd party encoder with the Dolby Encoding Engine.
Overrides VUI colour parameters as per DolbyVision profile 5 requirements
(video_format=1 (full-range),
colour_primaries=transfer_characteristics=matrix_coeffs=2 (unspecified),
chroma_loc_info_present_flag=0) and enables AUD and HRD.

NOTE - When dolbyVisionProfile is enabled:
1. Automatically set RcEnable = 1
2. Automatically set hrdEnable = 1
3. Automatically set default vbvBufferSize = 3000
4. Automatically set enableAUD =1

Applicable:

H.265 only

FFmpeg version 4.3.1 and above
Not Applicable:

JPEG, AV1 and H.264

FFmpeg version 4.2.1 and earlier
Supported Values:

Oor5
Default:

0: Disabled

NETINT © 2024 Page 32 of 228

" NETINT
Quadra Integration & Programming Guide

maxCLL

Specifies parameters for HDR Content Light Level Info as per CEA 861.3. Specified as a
string with format “%hu,%hu” where %hu are unsigned 16 bit integers. The first value is
the maximum content light level (or 0 if no maximum is indicated), the second value is
the maximum picture average light level (or 0). For example, for MaxCLL=1000 nits,
MaxFALL=400 nits: max-cll =“1000,400”. Note that this string value will need to be
escaped or quoted to protect against shell expansion on many platforms. When this
parameter is specified, it will be used in preference to content light level info side data of
FFmpeg AVFrame.

Not Applicable: JPEG and AV1
Default: None — Use side data values if present

masterDisplay
Specifies parameters for the HDR Mastering Display Colour Volume SEl as per SMPTE ST
2086. Specified as a string with format:
“G(%hu,%hu)B(%hu,%hu)R(%hu,%hu)WP(%hu,%hu)L(%u,%u)” where %hu are unsigned
16bit integers and %u are unsigned 32bit integers. The SEl includes XY display primaries
for RGB channels and white point (WP) in units of 0.00002 and max,min luminance (L)
values in units of 0.0001 nits
For example for a P3D65 1000-nits monitor, where G(x=0.265, y=0.690), B(x=0.150,
y=0.060), R(x=0.680, y=0.320), WP(x=0.3127, y=0.3290), L(max=1000, min=0.0001):
“G(13250,34500)B(7500,3000)R(34000,16000)WP(15635,16450)L(10000000,1)"
Note that this string value will need to be escaped or quoted to protect against shell
expansion on many platforms. When this parameter is specified, it will be used in
preference to mastering display info side data of FFmpeg AVFrame.

Not Applicable: JPEG and AV1
Default: None — Use side data values if present

enableAllSeiPassthru

All custom SEI types will be passed through if this is enabled. Also, when enabled, the
firmware SEI will be disabled.

Note - If the enableAllSeiPassthru parameter is enabled (set to 1) for decoding, then
the enableAllSeiPassthru parameter for encoding must also be enabled (set to 1).

Supported Values:
0: Disable
1: Enable

Default: 0

NETINT © 2024 Page 33 of 228

" NETINT
Quadra Integration & Programming Guide

useLowDelayPocType

When enabled, the encoder will use picture_order_count_type=2 in the H.264 SPS, this
tells the decoders all frames are in sequence, this typically results in a lower decoding
delay. This feature is only supported for H.264 when all frames are reference frames, i.e,
when using gop presets gopPresetldx=1, 3, 7, and 9. For custom gop (gopPresetldx 0),
this feature is only supported for custom gop size 1. By default, this feature is disabled,
and the encoder uses picture_order_count_type=0, which is compatible with all gops.

Not Applicable: JPEG, H265, and AV1
Supported Values:

0: Disable

1: Enable
Default : 0: Disabled

confWinTop

Conformance top window size. This is the number of pixel rows at the top of the picture
that should not be displayed when decoding. This is in addition to any cropping info that
may already be included on the AVFrame to be encoded.

Not Applicable: AV1 and JPEG
Supported Values: 0 to 8192
Default : 0

confWinBot

Conformance bottom window size. This is the number of pixel rows at the bottom of the
picture that should not be displayed when decoding. This is in addition to any cropping
info that may already be included on the AVFrame to be encoded.

Not Applicable: AV1 and JPEG
Supported Values: 0 to 8192
Default: 0

confWinLeft

Conformance left window size. This is the number of pixel columns at the left side of the
picture that should not be displayed when decoding. This is in addition to any cropping
info that may already be included on the AVFrame to be encoded

Not Applicable: AV1 and JPEG

Supported Values: 0 to 8192
Default: 0

NETINT © 2024 Page 34 of 228

" NETINT
Quadra Integration & Programming Guide

confWinRight

Conformance right window size. This is the number of pixel columns at the right side of
the picture that should not be displayed when decoding. This is in addition to any
cropping info that may already be included on the AVFrame to be encoded

Not Applicable: AV1 and JPEG
Supported Values: 0 to 8192
Default: 0

repeatHeaders

Specifies whether the encoder repeats the VPS/SPS/PPS headers on all | frames. Or if
intra refresh is enabled, headers are repeated on P frames at IntraRefreshMinPeriod.

For HDR/HDR10+ streams, the static HDR SEls (content light level info, mastering display
colour volume, and alternative transfer characterics) if present are also repeated.
Repeated headers permit a bitstream to be decoded mid-stream. It also provides error
resilience, in case packets were lost during transmission.

Not Applicable: JPEG and AV1
Supported Values:

0: disable

1: enable
Default: 1

prefTRC

Specifies the HLG preferred transfer characteristics value. If this parameter is present,
the encoder will include an alternative transfer characteristics metadata in the bitstream
with the preferred transfer characteristics field set to the value of this parameter. If the
parameter is not present, the SEI will not be present. The alternative transfer
characteristics metadata is required by ETSI for HLG and specifies an alternative transfer
characteristic from that provided in the VUI.

Not Applicable: JPEG

Supported Values: 0 to 255
Default : Alternative Transfer Charactersictics metadata is not present

NETINT © 2024 Page 35 of 228

" NETINT
Quadra Integration & Programming Guide

sliceMode

Enable multi-slice encoding. Must be used in conjunction with parameter sliceArg.

Not Applicable: JPEG and AV1
Supported Values:

0: single slice per frame

1: multiple slices per frame
Default: 0

NETINT © 2024 Page 36 of 228

" NETINT
Quadra Integration & Programming Guide

sliceArg

If sliceMode is enabled, this represents the number of CTU/MB rows in each slice. Value
must be between 1 and number of CTU/MB rows in the picture. The number of rows is
calculated by height/64 (H.265) or by height/16 (H.264).

Not Applicable: JPEG and AV1
Supported Values: 1 to number of CTU/MB rows
Default: O (invalid)

entropyCodingMode

Selects the entropy coding mode used in the encoding process. Note that CABAC is only
compatible with H.264 Main, High, and High10 profiles and is disabled for other profiles.

Not Applicable: JPEG, AV1, and H.265
Supported Values:

0: CAVLC

1: CABAC
Default: 1

frameRate

The numerator of the frame rate. This works in conjunction with frameRateDenom to
support fractional framerates. The frameRate is used by the encoder for rate control
(when enabled) and to set the VUI timing information. If not specified, the frameRate
passed in from FFmpeg (or 3rd party application) is used. This parameter is intended for
integrating directly with libxcoder.

Supported Values: 1 to 2%-1
Default: FFmpeg Value

frameRateDenom

The encoder frame rate denominator that supports fraction frame rate together with
frameRate. The frame rate would then be frameRate / frameRateDenom, e.g.
frameRate=30000 and frameRateDenom=1001 represents frame rate of
30000/1001=29.97. This parameter is intended for integrating directly with libxcoder.

Supported Values: 1 to 2%-1
Default: 1

NETINT © 2024 Page 37 of 228

" NETINT
Quadra Integration & Programming Guide

colorPri

Specifies one of the VUI color description parameters: color_primaries. The supported
values are defined as AVColorPrimaries in FFmpeg, and ni_color_primaries_t in
libxcoder. If colorPri, colorTrc, or colorSpc is not equal to 2 (unspecified), the relevant
VUI parameters are added to the sequence header.

Not Applicable: JPEG
Supported Values: 0-12, 22
Default: FFmpeg value

colorTrc

Specifies one of the VUI color description parameters: transfer_characteristics. The
supported values are defined as AVColorTransferCharacteristic in FFmpeg, and
ni_color_transfer_characteristic_t in libxcoder. If colorPri, colorTrc, or colorSpc is not
equal to 2 (unspecified), the relevant VUI parameters are added to the sequence header.

Not Applicable: JPEG
Supported Values: 0-18
Default: FFmpeg value

colorSpc

Specifies one of the VUI color description parameters: matrix_coeffs. The supported
values are defined as AVColorSpace in FFmpeg, and ni_color_space_t in libxcoder. If
colorPri, colorTrc, or colorSpc is not equal to 2 (unspecified), the relevant VUI
parameters are added to the sequence header.

Not Applicable: JPEG
Supported Values: 0-14
Default: FFmpeg value

sarNum, sarDenom
Specifies the VUl sample aspect ratio aspect_ratio_idc, as sarNum : sarDenom. When
sarNum is 0, aspect_ratio_idc is not included in VUI. When sarNum is greater than 0, the

aspect_ratio_idc is included in VUI. This parameter is intended for integrating directly
with libxcoder.

NOTE — A user must use the matching sarNum and sarDenom to the actual picture.
Otherwise, there will be a discrepancy between the value in the VUI and the actual.

Not Applicable: JPEG

Supported Values: 0 to max integer
Default: FFmpeg value

NETINT © 2024 Page 38 of 228

" NETINT
Quadra Integration & Programming Guide

videoFullRangeFlag

Specifies the VUI video_full_range_flag parameter value. When it is 1, the relevant VUI
parameters are added to the squence header.

NOTE — A user must use the matching value to the actual picture. Otherwise, there will
be a discrepancy between the value in the VUl and the actual.

Not Applicable: JPEG
Supported Values: O or 1
Default: FFmpeg value

avlErrorResilientMode

Specifies whether AV1 error resilient mode is enabled. AV1 error resilient mode allows
the syntax of a frame to be parsed independently of previously decoded frames. Note
that enabling AV1 error resilient mode may reduce compression efficiency. Also note
that error resilient mode is only applicable to AV1, enabling this mode has no effect on
other codecs.

NOTE - Please note that enabling AV1 error resilient mode may reduce compression
efficiency. Our test results showed that enabling AV1 error resilient mode can cause up
to more than 5% of BD rate loss, and the average BD rate loss is around ~2.42%

Not Applicable: JPEG, H.264, and H.265
Supported Values:

0: Disable

1: Enable
Default: 0: Disabled

NETINT © 2024 Page 39 of 228

" NETINT
Quadra Integration & Programming Guide

temporallLayersEnable

Enables temporal scalability with SVC (Scalable Video Coding). When enabled,
temporal layers related syntax is added to bitstream. For temporal IDs assignments for
each preset gop pattern, please refer to section 8.4.3.2 - Pre-defined GOP Structure.

NOTE — For custom gop pattern (gopPresetldx 0), SVC temproal layers syntax is added to
bitstream when temporal IDs specified in Custom Gop Parameters (xcoder-gop) are
greater than 0, regardless of temporallLayersEnable. Please refer to section 8.4.3.1 -
Custom Gop Structure for information regarding Custom Gop Parameters

Not Applicable: JPEG
Supported Values:
0: Disable
1: Enable
Default: O: Disabled

ppsinitQp
Specifies h.264 pic_init_qp_minus26 or h.265 init_gp_minus26 in Picture Parameter
Sets. When specified, every Picture Parameter Set in the h.264 or h.265 bitstream will
signal the specified ppsInitQp value for init_qp_minus26 syntax - instead of setting
init_gp_minus26 according to the initial QP value decided by firmware, which is the
default behavior when user does not specify ppsinitQP.

NOTE — When ppsInitQp parameter is not specified, firmware sets PPS init_gp_minus26
according to the initial QP, which is automatically decided by the firmware

NOTE - ppsInitQp parameter is not applicable to AV1 and JPEG

Not Applicable: AV1 and JPEG
Supported Values: 0 to 51
Default: FW automatically decided initial QP value

NETINT © 2024 Page 40 of 228

" NETINT
Quadra Integration & Programming Guide

Libxcoder Application Features

lowDelay

Specifies whether or not to enable the low latency mode in encoding. When enabled,
libxcoder increases its rate of polling the encoder and only permits buffering of a single
frame to minimize the delay.

NOTE - That when enabled, the gopPresetldx must be 1, 3, 7,9, 10, or 0 with a
consecutive order gop pattern, lookaheadDepth must be 0, and multicorelointMode
must be 0.

NOTE - That in libxcoder encoder send/receive multi-thread mode, when enabled, its
value can be a positive integer value in milliseconds for threads synchronization. It
represents the time the sending thread waits before deciding it’s in a deadlock and has to
continue without waiting for receiving thread to signal.

Not Applicable: JPEG
Supported Values:

0: disable

Positive integer: enable
Default: 0

minFramesDelay

Specifies whether to enable the minimum encoding delay frames feature. When
enabled, libxcoder increases its rate of polling the encoder and only permits buffering of
the minimum frames to minimize the delay.

NOTE - The minimum encoding delay frames feature supports all gopPresetldx values
while also supporting lookaheadDepth. The number of minimum encoding frames
depends on gopsize and lookaheadDepth. For example, when gopPresetldx is 5 and
lookaheadDepth is 4, the number of minimum encoding delay frames is 7, which is
obtained by adding gopsize and lookahead Depth, then subtracting one.

Not Applicable: JPEG
Supported Values:
0: disable
1: enable
Default: 0

NETINT © 2024 Page 41 of 228

" NETINT
Quadra Integration & Programming Guide

keepAliveTimeout
Specifies a session keep alive timeout value. This is a periodic request/response between
libxcoder and XCoder firmware that when timed out, the session instance will be
terminated by XCoder firmware. If this option is used in conjunction with FFmpeg
command line option keep_alive_timeout then keepAliveTimeout overrides
keep_alive_timeout.

Supported Values: Integer in the range 1 to 100
Default: 3

zeroCopyMode

Enable or disable libxcoder zero copy feature. When zero copy is disabled, libxcoder
copies YUV data from input frame buffer(s) to consecutive internal buffer before
transferring data to device. This reduces overhead by triggering data transfer only once.
When zero copy is enabled, libxcoder transfers data directly from input frame buffer(s)
(luma / chroma buffers can be inconsecutive) to device, which improves performance
when encoding high resolution / large frames.

The default setting is auto mode, in which libxcoder decides whether to enable or
disable zero copy based on input resolution — zero copy is enabled if input resolution >=
1080p, and disabled if input resolution < 1080p. Auto mode's zero copy enable / disable
is based on performance test results, and therefore is the suggested setting.

NOTE - For applications based on libxcoder instead of calling FFMpeg libavcodec
functions, please refer to libxcoder_API_IntegrationGuide section 6.6.2 - “Input YUV Frame
Preparation” regarding the libxcoder APIs required to use the zero copy feature. Otherwise zero
copy will not take effect regardless of the zeroCopyMode setting.

NOTE — Zero copy only applies to input frames which meet the following requirements

e YUV420 8 or 10 bit planar/semi-planar pixel format, or RGBA / BGRA / ABGR / ARGB
e Input frame width and height are 2-pixels aligned

e Input frame linesizes (aka strides) of luma / chroma buffers are 2-bytes aligned

e Input frame resolution >= 144x128

e Each input frame’s linesize shall be the same throughout the entire encoding session

Supported Values:
0: Disable zero copy (For any input resolution)
1: Enable zero copy (For any input resolution)
-1: Auto mode (Enable zero copy if input resolution >= 1080p,
disable zero copy if input resolution < 1080p)
Default: -1 (Auto mode)

NETINT © 2024 Page 42 of 228

" NETINT
Quadra Integration & Programming Guide

ddrPriorityMode

Specifies the DDR memory priority mode. Only need set once at beginning, and it will
reset to default automatic after current process finish.

NOTE — This is a global setting, it will influence all running processes. It is best to only
use it when there is only one process. If there are multiple processes, other processes
fps performance may influence by this parameter.

Supported Values:
0: set default ddr mode
l:increase ddr priority for decoder and encoder
2:increase ddr priority for scaler
3:increase ddr priority for ai

Default: -1

statisticOutputLevel

Specify the information output for each frame, including the maximum and minimum
MV of the macroblocks in the current frame, as well as the number of inter/intra
macroblocks in the current frame and the frame size of the current frame.

NOTE — This feature will decrease the performance because collecting this information is
time-consuming.
Supported Values:

0: disable
1:enable
Default: 0

disableAdaptiveBuffers

Specifies whether to disable adaptive buffers when bitstream sequence is changed.
When disableAdaptiveBuffers=1 and width/height of pictures is different from previous
width/height in sequence change, it will take a little time to re-configure encoder with
new width/height.

Note — If this option is used and the output type of decoder is hw in transcoding

NETINT © 2024 Page 43 of 228

" NETINT
Quadra Integration & Programming Guide

, the disableAdaptiveBuffers parameter of quadra decoder should be used at same
time.
Not Applicable: JPEG or VP9.
Supported Values:
0: Disable
1: enable
Default: O: Disable

NETINT © 2024 Page 44 of 228

" NETINT
Quadra Integration & Programming Guide

Encode Algorithm and Features

rdoLevel

Specifies the number of candidates to use for Rate Distortion Optimization. RDO is a
method for improving video quality during compression. Lower values mean a lower
quality but better performance, higher values mean more quality but less performance

Not Applicable: JPEG
Supported Values:
H.264: 1
H.265:1to 3
AVl1l:1to3
Default: 1

EnableRdoQuant

Specifies whether to enable or disable RDO Quantization. RDOQ provides optimized
guantization to further improve video quality, with the cost of lower performance

Applicable: H.264 and H.265
Not Applicable: AV1 and JPEG
Supported Values:

0: Disable

1: Enable
Default: 0

enable2PassGop
This parameter will affect the group of picture pattern for 2-pass encoding.
By default, it is disabled. Encoder has its own GOP for 2-pass mode when lookahead > 0.
GOP will be different from what is described in gopPresetldx.
When it is enabled, the 2-pass encoding’s GOP is consistent with GOP specified by
gopPresetldx.
For more details, please refer to Section 8.4.3.2 Pre-defined GOP Structure.
Not Applicable:JPEG
Supported Values:
0: Disable

1: Enable
Default: 0

NETINT © 2024 Page 45 of 228

" NETINT
Quadra Integration & Programming Guide

lookAheadDepth

Number of frames to lookahead while encoding. Lookahead can increase encoder
quality at the expense of performance (approximately 25%) and delay. Note that the
input video pixel width must be at least 288 pixels wide.

Not Applicable: JPEG
Supported Values

0: Disable lookahead

4 to 40: Enable lookahead with lookahead depth in frames (4 to 40 frames).
Note: Due to resource constraints, when transcoding a 8k(7680x4320) 10 bitstream, the
maximum value of lookahead is 16.

Default: 0

gopPresetldx
Defines the Group Of Picture pattern.

By default, encoder uses Adaptive Gop, for which the encoder dynamically adjusts gop
pattern while encoding based on statistics collected from previous frames (1-pass) or
lookahead (2-pass).

If both coding parameters gopPresetldx and lookaheadDepth are set, then the gop
pattern is different from setting only the coding parameter gopPresetldx. For details,
please refer to Section 8.4.3 Custom Gop Structure.

For 2-pass encoding, the GOP is not only affected by this parameter, but also affected by
parameter enable2PassGop. Please refer to it for more details.

Not Applicable: JPEG
Supported Values:

-1: Adaptive Gop (default)

: Custom Gop

2 I-I-I-1,..1 (all intra, gop_size=1)

: I-B-B-B,...B (consecutive B, gop_size=1)

: 1-B-P-B-P,... (gop_size=2)

: 1-B-B-B-P,... (gop_size=4)

: I-B-B-B-B,... (consecutive B, gop_size=4)

: I-B-B-B-B-B-B-B-B,... (random access, gop_size=8)
: 1-P-P-P,... P (consecutive P, gop_size=1)

10 : I-P-P-P-P,... (hierarchical P, gop_size=4)

OCooNUT b~ WELO

Default: -1 (Adaptive Gop)

NETINT © 2024 Page 46 of 228

" NETINT
Quadra Integration & Programming Guide

intraPeriod

intraQP

Key frame / IDR frame interval.

Supported Values:
Oto 1024
0 implies an infinite period (disables periodic IDR frames)

Default: 120

Specifies intra frame quantization parameter.
NOTE - The intraQP only takes effect when rate control is disabled e.g. rcEnable = 0

When used for JPEG, the encoder scales the quantization table in the JPEG standard to
produce bitstreams of different video quality.

Supported Values: 0 to 51

Default : 22

intraQPDelta

gLevel

Delta value added to the Intra frame QP. Can be used to lower the Intra Picture encoded
size (higher QP) or to increase Intra quality relative to the Inter Pictures (lower QP) to get
rid of intra flashing. Recommended value range is —12 to 12.

NOTE — The intraQpDelta only takes effect when rate control is enabled, eg. rcEnable = 1

After intraQpDelta is applied, the intra frame QP is further adjusted by rate control,
which means that the encoded bitstream may not contain the exact value of the user-
defined delta depending on the source.

Supported Values: -51 to 51

Default : -2

JPEG only. Specifies the quantization scale to produce the different video qualities by
scaling the quantization table. Higher values produce better quality.

Not Applicable: H264, H265, and AV1

Supported Values: 0to 9

NETINT © 2024 Page 47 of 228

" NETINT
Quadra Integration & Programming Guide

minQP
Min QP for rate control.
Supported Values: 0 to 51

Default: 8

maxQP

Max QP for rate control.

Supported Values: 0 to 51

Default: 51

roiEnable

ROI (Region of interest), is a feature of the encoder that permits the quality of some
regions to be improved at the expense of other regions. If rate control is disabled, the
QPs are used directly for encoding, if rate control is enabled, the encoder scales the QPs
as necessary to meet the bitrate target. When ROl is enabled, the ROl map can be
updated, enabled, or disabled on a frame by frame basis.

For ROl map configuration, please refer to ni_quadra_roi in section 10 - Filters.

NOTE — The ROI has no effect for 2-pass (lookaheadDepth > 0) encode
Not Applicable: JPEG
Supported Values:

0: disable

1: enable

Default: 0

NETINT © 2024 Page 48 of 228

" NETINT
Quadra Integration & Programming Guide

RoiDemoMode

Enables the ROl demo mode. When ROl is enabled (roiEnable=1), ROIDemoMode
permits the ROI feature to be demonstrated using the standard FFmpeg command line,
without additional application development. ROl demo mode is currently only
supported on FFmpeg 3.4.2 and above. Demo mode 1 has QP=40 for the center 1/3, and
QP=10 for outer 2/3. Demo mode 2 has opposite QP. In both cases ROl is enabled at
frame 90 and disabled at frame 300.

NOTE — ROI takes no effects for 2-pass (lookaheadDepth > 0) encode

Applicable: FFmpeg 3.4.2 and above
Not Applicable: JPEG

Supported Values: 0 to 2

Default: O: disabled

cacheRoi
Enables caching of an ROl map. When ROI is enabled, the ROl map can be changed on a
frame by frame basis. When cacheRoi is enabled at the same time, the currently
available ROl map is cached and applied to the subsequent frames until a new map is
supplied. It is only valid if ROl is enabled.
NOTE — ROI takes no effects for 2-pass (lookaheadDepth > 0) encode

Not Applicable: JPEG
Supported Values:
0: disable

1: enable

Default: 0

intraRefreshMode

Selects intra refresh macroblock update method. This method is not supported for 2-
pass encode and the command will be rejected.

Not Applicable: JPEG
Supported Values:
0: no intra refresh

1: row — works in conjunction with next parameter

Default: 0

NETINT © 2024 Page 49 of 228

" NETINT
Quadra Integration & Programming Guide

intraRefreshArg

Specifies the number of consecutive CTB or MB rows refreshed (to be encoded as Intra)
per frame

NOTE - Only takes effects if intraRefreshMode = 1
NOTE - For h.264, each MB row is 16 pixels or more in height
For h.265 / AV1, each CTU row is 64 pixels or more in height

Please note if intra refresh cycle is 1 (meaning intra refresh must be completed in 1
frame), this defeats the purpose of intra refresh and therefore the encode command will
be rejected. Intra refresh cycle can be calculated by

Intra refresh cycle = input picture height / (intraRefreshArg * 16 for h.264, or * 64 for
h.265 and AV1)

For example, if h.265 input resolution is 640x480 and intraRefreshArg is 8, intra refresh
cycle = ceil(480/ (64 * 8)) = 1, which is invalid setting and will be rejected

Not Applicable: JPEG
Supported Values:
0: intra refresh is disabled

Nonzero: number of consecutive CTB / MB rows to be encoded as Intra

Default: 0

IntraRefreshMinPeriod

Intra refresh cycle starts at intra period, which is specified by intraPeriod or
intraRefreshMinPeriod. If both intraRefreshMinPeriod and intraPeriod are specified,
intreaRereshMinPeriod has higher priority.

Not Applicable: JPEG

Default: 120

NETINT © 2024 Page 50 of 228

" NETINT
Quadra Integration & Programming Guide

IntraRefreshResetOnForcelDR
Intra refresh cycle will reset to restart on force IDR frame
Note this only takes effects if intraRefreshMode = 1

Not Applicable: JPEG
Supported Values:
0: intra refresh on force IDR frame is disabled
1: intra refresh on force IDR frame is enabled
Default: 0

longTermReferenceEnable

Enables the long term reference (LTR) feature. With long term reference enabled, an
application can
1. Set LTR interval by longTermReferencelnterval, and/or
2. Set any frame as LTR on a frame by frame basis. For more detail refer to
QUADRA libxcoder APl Guide
3. Set number of LTRs (1 or 2) by longTermReferenceCount

LTR is only supported by low delay gop (i.e. all frames in sequence), namely
gopPresetldx=1, 3, 7, 9, or O (if custom gop has consecutive order frames). Also, LTR is
not supported for 2-pass encode and the command will be rejected.

NOTE — When the longTermReferenceEnable is enabled Quadra preserves up to 2 LTRs.
The number of LTRs (1 or 2) can be configured by longTermReferenceCount. The
application does not need to specify the LTR index as Quadra maintains the LTR index
internally.

NOTE — The occurrence of an IDR frame will clear any existing LTRs (referencing frames
prior to an IDR is not allowed in the standards).

Not Applicable: JPEG
Supported Values:
0: disable
1: enable
Default: 0

NETINT © 2024 Page 51 of 228

" NETINT
Quadra Integration & Programming Guide

longTermReferencelnterval

When longTermReferenceEnable is enabled, assign longTermReferencelnterval > 0 will
set frames as LTR periodically upon specified frame interval. If
longTermReferencelnterval = 0, only IDR frames will be set as LTR

Note the longTermReferencelnterval only takes effect if longTermReferenceEnable = 1

Not Applicable: JPEG

Default: 0

longTermReferenceCount

When longTermReferenceEnable is enabled, the number of LTRs (1 or 2) can be
configured by longTermReferenceCount.

By default, Quadra preserves up to 2 LTRs. However, due to Quadra h.264
encoder limitation, some decoders may not be able to decode h.264 bitstream Quadra
encoded with 2 LTRs, in which case longTermReferencelnterCount should be set to 1

Not Applicable: JPEG
Supported Values: 1 to 2

Default: 2

NETINT © 2024 Page 52 of 228

" NETINT
Quadra Integration & Programming Guide

multicoreJointMode

Enables encoder multi-core mode where all 4 cores work together in parallel (a.k.a. joint
mode). When disabled (default) the encoder instances use a single video core to encode.
When enabled, encoder instances use all 4 video encoding cores in parallel.
Recommended only for high resolution encoding with less than 4 instances e.g. 8K
encode. When more than 4 encoding instances are used enabling this feature will lower
performance due to extra synchronization overhead.

When multicoreJointMode is enabled, lowDelay and picSkip must be 0.

Not Applicable: JPEG
Supported Values:
0: Disable
1: Enable

Default: 0: Disable

enableSSIM
When enabled, XCoder firmware will return SSIM values for Y, U, and V of each encoded
frame in the ni_metadata_enc_bstream_t structure. The SSIM values are 4 decimal
places multiplied by 10000. Divide by 10000 to get the original value.

NOTE — SSIM measures video quality by calculating Structural Similarity. Range O to 1.

NOTE — By default, SSIM values are logged in debug mode. To change this to info level at
compile time use -m, --with-info-level-ssim-log when compiling libxcoder
with 1ibxcoder/build.sh script.

Not Applicable: JPEG and AV1
Supported Values:

0: Disable

1: Enable

Default: 0

NETINT © 2024 Page 53 of 228

" NETINT
Quadra Integration & Programming Guide

ReconfDemoMode

Specifies demo mode. When enabled the specified demo mode reconfigures the
encoding parameters while encoding is in progress. Must be used with ReconfFile. For
example, “ReconfDemoMode=1:ReconfFile=reconf.txt”. The types of parameters that
can be reconfigured by the demo mode are listed in Supported Values. The example
command below shows how to enable the bitrate reconfiguration demo:

ffmpeg -vsync 0 -c:v h264_ni_quadra_dec -dec 0 -y -i
Dinner_1920x1080p30_300.h264 -c:v h264_ni_quadra_enc -xcoder-params
"bitrate=1000000:RcEnable=1:ReconfDemoMode=1:ReconfFile=reconf.txt" -enc 0
out.h264

The Long Term Reference (LTR) and the reference invalidation features are explained in
detail in sections 8.4.1 Long Term Reference and 8.4.2 Reference Invalidation,
respectively.

Not Applicable: JPEG

Supported Values:
1: Bitrate
: Intra Period
: VUI
: Long Term Reference (LTR) frame setting
: Max & Min qp setting
: Long Term Reference (LTR) interval setting
: Frame reference invalidation
: Framerate
10: maxFrameSize_Bytes
14: CRF
15: CRF (floating point value)
16: VBV value
17: maxFrameSize_Byte by ratio
Default: 0 (Disabled)

O 00O NOOP~WN

ReconfFile
Specifies the name of the reconf file from which the reconfiguration demo mode will
read key and value information. Must be used with ReconfDemoMode. For example,
“ReconfDemoMode=1:ReconfFile=reconf.txt”. The reconf file must be created in the
same directory where the command is running. The file contains one line or multiple
lines of key:value pairs.

NOTE - The ReconfFile command only supports using the MaxFrameSize_Bytes.

The content of the reconf file for the different demo mode is shown in the examples below:

NETINT © 2024 Page 54 of 228

" NETINT
Quadra Integration & Programming Guide

Bitrate (ReconfDemoMode 1)
Key: frame number to change bitrate
Value: bitrate
File content example: 100:1000000
At frame number 100, bitrate changes to 1000000 bps. Add multiple
lines of key:value to change the bitrate over multiple frames.

Intra Period (ReconfDemoMode 2)

Key: frame number to change intra period

Value: intra period

File content example: 100:30
At frame number 100, force IDR frame (aka key frame) and changes
intra period to 30. Add multiple lines of key:value pairs to change intra
period over multiple frames.

NOTE - reconfigure intra period is not allowed if intraRefreshMode is enabled or

if gopPresetldx is 1

VUI (ReconfDemoMode 3)
Key: frame number to change VUI
Value: colorDescPresent, colorPrimaries, colorTrc, colorSpace,
aspectRatioWidth, aspectRatioHeight, videoFullRange
File content example: 100:1,255,255,255,16,11,1
A VUI containing the 7 listed parameter changes at frame number 100.

Long Term Reference (LTR) frame setting (ReconfDemoMode 4)
Refer to the description of longTermReferenceEnable
Key: frame number to be set as LTR
Value: 1 (set as LTR)
File content example: 10:1
frame 10 is set to LTR.

Max & Min gp setting (ReconfDemoMaode 6)
Key: frame number to change qp
Value: minQpl, maxQpl, maxDeltaQp, minQpPB, maxQpPB
Note that maxDeltaQp is currently ignored
File content example: 100:8,51,51,8,51
At frame 100, change max & min gp

NETINT © 2024 Page 55 of 228

" NETINT
Quadra Integration & Programming Guide

Long Term Reference (LTR) interval setting (ReconfDemoMode 7)
Refer to the description of longTermReferencelnterval
Key: frame number
Value: LTR interval
File content example: 25:5
At frame 25, change LTR interval to 5

Frame reference invalidation (ReconfDemoMode 8)
Key: frame number
Value: reference frame to invalidate
File content example: 24:21
At frame 24, invalidate all references with frame number >= 21

Framerate (ReconfDemoMode 9)
Key: frame number to change framerate
Value: framerate numerator, denominator
File content example: 100:25,1
At frame 100, change framerate to 25

MaxFrameSize parameter setting (ReconfDemoMode 10)

NOTE - The MaxFrameSize parameter has been deprecated and should NOT be
used. Instead, use the more explicit MaxFrameSize_Bytes parameter (see
below), which is equivalent of MaxFrameSize.

Using the new MaxFrameSize_Bytes parameter will also make the Quadra
application code easier to understand.

Refer to the description of MaxFrameSize for required settings

Key: frame number to change MaxFrameSize
Value: maximum frame size in bytes
File content example: 100:200000
At frame 100, change MaxFrameSize to 200000 bytes

NETINT © 2024 Page 56 of 228

" NETINT
Quadra Integration & Programming Guide

MaxFrameSize_Bytes parameter setting (ReconfDemoMode 10)

Refer to the description of MaxFrameSize_Bytes for required settings

Key: frame number to change MaxFrameSize_Bytes
Value: maximum frame size in bytes
File content example: 100:200000
At frame 100, change MaxFrameSize_Bytes to 200000

CRF parameter setting (ReconfDemoMode 14)
Key: frame number to change crf setting
Value: crf value (ranging from 0 — 51)
File content example: 100:27
At frame 100, change crf value to 27

NOTE — Reconfigure CRF parameter is valid only when CRF mode is enabled (CRF mode
enabled by setting crf parameter when encoding session started)

NOTE — Run-time disabling CRF (reconfigure crf to -1) is not allowed
Not Applicable: JPEG

Supported Values: name string that has length < 10 excluding file extension
Default: null

VBV parameter setting (ReconfDemoMode 16)
Key: frame number to change vbv buffer size and vbv max rate setting
Value: vbvBufferSize
vbvMaxRate(0 (disable), or any value >= bitrate)
File content example: 100:2000000,2500
At frame 100, change vbvBufferSize to 2500, vbvMaxRate to 2000000

Not Applicable: JPEG
Supported Values: for vbvBufferSize(—1, 0 or [min_vbv_size ~ 3000].), The min_vbv_size
is defined as 1000/framerate (one frame time) but not less than 10m

for vbvMaxRate O (disable), or any value >= bitrate

Default: null

NETINT © 2024 Page 57 of 228

" NETINT
Quadra Integration & Programming Guide

MaxFrameSizeRatio parameter setting (ReconfDemoMode 17)
Key: frame number to change MaxFrameSizeRatio
Value: maximum frame size in ratio
File content example: 100:200
At frame 100, change MaxFrameSizeRatio to 200

NOTE — Reconfigure MaxFrameSizeRatio parameter is valid only when low_delay_mode
is enabled, MaxFrameSizeRatio need to > 0, and the final MaxFrameSize will <
NI_MAX_FRAME_SIZE

enableAlEnhance
Embedded image enhancement models are utilized to improve the visual quality of
videos during the transcoding process. Upon decoding the YUV hardware frames, they
are transmitted to the Quadra Al Inference Engine, which generates enhanced frames of
identical size and format, before passing them on to the encoder. Generally, this
approach results in videos with superior visual quality.

NOTE — This feature only support 8bit with following resolution:
1280x720,1920x1080,3840x2160,720x1280,1080x1920,2496x1080

Not Applicable: JPEG

Supported Values:
= 0: disable the feature.
=1: enable the feature.

Default: 0

NOTE - Specify AlEnhancelLevel when enabling this parameter.

NETINT © 2024 Page 58 of 228

" NETINT
Quadra Integration & Programming Guide

AlEnhanceLevel
Specifies the adjust level of Al engine to Al enhance optimization. The higher means
the Al engine would change more about the original picture and the PSNR may be
lower.

NOTE — This feature is only effective when enableAlEnhance=1.

Not Applicable: JPEG

Supported Values:
=1: Lowest
=2: Medium
=3: Highest

Default: 3

NETINT © 2024 Page 59 of 228

" NETINT
Quadra Integration & Programming Guide

cropWidth

Specifies cropping width, must be even.

NOTE — When specified, cropWidth + horOffset must be less than input picture width
NOTE — When specified, cropHeight must also be specified a valid value

Not Applicable: JPEG
Supported Values: 144 pixels to input picture width

Default: 0

cropHeight

Specifies cropping height, must be even.

NOTE — When specified, cropHeight + verOffset must be less than input picture height
NOTE — When specified, cropWidth must also be specified a valid value

Not Applicable: JPEG

Supported Values: 128 pixels to input picture height

Default: 0

horOffset

Specifies horizontal cropping offset, must be even.

NOTE — horOffset is only effective when cropWidth and cropHeight are specified
NOTE — When specified, cropWidth + horOffset must be less than input picture width

Not Applicable: JPEG
Supported Values: 0 to input picture width

Default: 0

NETINT © 2024 Page 60 of 228

" NETINT
Quadra Integration & Programming Guide

verOffset

Specifies vertical cropping offset, must be even.

NOTE - verOffset is only effective when cropWidth and cropHeight are specified
NOTE — When specified, cropHeight + verOffset must be less than input picture height

Not Applicable: JPEG
Supported Values: 0 to input picture height

Default: 0

NETINT © 2024 Page 61 of 228

" NETINT
Quadra Integration & Programming Guide

Rate Control

RcEnable

Enables or disables rate control.

Supported Values:
0: Disable
1: Enable

Default: 0

bitrate

Used when RcEnable is enabled (set to 1) or crf value is specified (crf value >=0),
otherwise it is ignored. The encoding bitrate is in bps.

NOTE — Please also refer to bitrateMode parameter, which is used to control whether
rate control handles user specified bitrate as the maximum bitrate or the average bitrate
RcEnable is 1 (ABR or CBR mode), cuLevelRCEnable is 1 (enable block level rate control),
and lookaheadDepth is O (no lookahead.

Supported Values:
The range is 10000 to 800000000. As an example, set 3000000 for 3 Mbps.

Default: 200000

NETINT © 2024 Page 62 of 228

" NETINT
Quadra Integration & Programming Guide

bitrateMode

Decides rate control behavior when RcEnable=1, cuLevelRCEnable=1, and
lookaheadDepth=0 (NOTE - lookaheadDepth default value is 0).

When bitrateMode is 0 (default), encoder perceives bitrate as the maximum bitrate
allowed, and therefore may produce bitrate lower than bitrate to achieve higher
compression efficiency. When bitrateMode is 1, encoder perceives bitrate as the
average bitrate target, and shall produce bitrate close to the target.

NOTE - bitrateMode mainly affects low delay gop patterns, including gopPresetldx 3, 7,
9. For other gop presets, the effects of bitrateMode may not be noticeable.

NOTE - Setting bitrateMode=1 may cause more instantaneous bitrate fluctuations
and/or bitrate spikes compared to bitrateMode 0. Therefore, it is recommended to use
bitrateMode 0 for applications which need to prevent bitrate spike.

Applicable: This parameter is valid when RcEnable is 1, cuLevelRCEnable is 1 (enable
block level rate control), and lookaheadDepth is 0 (no lookahead). Please also note this
parameter does not affect CRF or Capped CRF mode (refer to crf parameter).

Not Applicable: JPEG

Supported Values:
0: Maximum bitrate

1: Average bitrate

Default: 0 (Maximum bitrate)

NETINT © 2024 Page 63 of 228

" NETINT
Quadra Integration & Programming Guide

enableVFR
Specifies the variable framerate(VFR) encoding is support or not.

The VFR feature is disabled by default and the encoder rate control assumes that the
framerate is constant. When enabled, the VFR feature uses the video timestamps to
calculate the average framerate every second. Encoding a VFR stream without VFR
enabled will likely result in the encoded bitrate being wrong.

For example, the framerate reported in a video container may be 25 fps, while the
average framerate from the timestamps could be 20fps. Without VFR enabled, the
average encoded bitrate in this case would be only 80% of the target.

Enabling the VFR feature also causes h.264 fixed_frame_rate_flag syntax to be set to 0.
Supported Values:

0: Disable
1: Enable

Default: 0

NETINT © 2024 Page 64 of 228

" NETINT
Quadra Integration & Programming Guide

vbvBufferSize

Specifies the size of the VBV (CPB) buffer in milliseconds. This parameter determines if
HRD (Hypothetical Reference Decoder) compliance is followed when RcEnable is 1, or if
peak bitrate is constrained when crf >= 0. Setting vbvBufferSize to 0 will disable HRD
compliance or peak bitrate constraint.

NOTE - When vbvBufferSize is not specified (or when vbvBufferSize is set to -1), the
default setting varies depending on the rate control mode. For CBR mode (RcEnable = 1),
default vbvBufferSize is 3000. For CRF mode (crf >= 0), default vbvBufferSize is 0, which
means peak bitrate is not constrained.

Applicable: This value is valid if RcEnable = 1 or crf >=0

Not Applicable: JPEG

Supported Values:
The value of vbvBufferSize is in unit of millisecond; for example, vbvBufferSize
3000 sets the buffer size to (bitrate * 3 seconds).
The range of supported values is —1, 0 or [min_vbv_size ~ 3000].
min_vbv_size is 1000/framerate (one frame time) but not less than 10ms
Value 0 disables HRD compliance and peak bitrate constraint.
Value -1 (default) is the auto mode in which the default VBV buffer size is
determined by rate control mode (3000 in CBR mode, 0 (no VBV buffer
constraint) in CRF mode).

Default: 3000 in CBR mode (RcEnable = 1)

0 in CRF mode (crf >=0)

NETINT © 2024 Page 65 of 228

" NETINT
Quadra Integration & Programming Guide

vbvMaxRate

The vbvMaxRate parameter sets the maximum bitrate limit during encoding in
Constrained VBR mode and Capped CRF mode. Compared to ABR mode, in which
vbvBufferSize and vbvMMaxRate are both set to 0, and CBR mode, in which vbvBufferSize
is set to valid non-zero values and vbvMMaxRate is set to 0, Constrained VBR mode
requires vbvBufferSize and vbvMaxRate both set to valid non-zero values. In Capped
CRF mode, encoder implicitly takes bitrate as the maximum bitrate limit if vbvMaxRate
is not set; otherwise, encoder will take vbvMaxRate as the maximum bitrate limit when
itis set.

Constrained VBR mode sample FFmpeg command —

ffmpeg -c:v h264 ni quadra dec -i crowdrun 1920x1080.264 -c:v
h264 ni quadra enc -xcoder-params
"RcEnable=1:bitrate=3000000:vbvMaxRate=6000000:vbvBufferSize=1
000™ quadra.h264

NOTE - In Constrained VBR mode, bitrate parameter specifies the average bitrate, while
vbvMaxRate sets the maximum bitrate limit. The instantaneous (per frame) bitrate
fluctuation, however, is constrained by vbvBufferSize — larger VBV buffer may result in
higher instantaneous bitrate fluctuation.

NOTE - In Constrained VBR mode, vbvBufferSize must be >= average bits per frame,
which can be calculated by 1000 / framerate (in unit of ms). Also note that encoder will
reject configuration if vbvBufferSize < (1000 / framerate)

NOTE - In Constrained VBR mode, vbvMaxRate must be >= bitrate. Also note that
encoder will reject configuration if vbovMaxRate < bitrate
Not Applicable: JPEG

Supported Values: 0 (disable), or any value >= bitrate. Encoder will reject configuration if
vbvMaxRate < bitrate.

Default: 0

NETINT © 2024 Page 66 of 228

Quadra Integration & Programming Guide

" NETINT

NOTE - the following table provides a brief overview of min, max, average runtime bitrate as
handled and reported by various supported bitrate controls

quality at the cost of
higher peak rate

RasREltats Brief Definition vbvBufferSize [vbvMaxRate Runtime b'trat? varlatlor_1
control compared to bitrate setting
In ABR mode, rate
control maintains
average bitrate to match
target bitrate, but is not
constrained by VBV
buffer, and therefore . .
ABR P) Average bitrate ~= bitrate
. instant bitrate can
(Average Bit 0 0 parameter value
R fluctuate more
ate) compared to CBR. On the
other hand, in ABR
mode, the average
bitrate will be more
closely matching the
target bitrate.
Instant bitrate (per second) is
constrained by bitrate
parameter value
In CBR de, rat . .
" r_no e rate Average bitrate <= bitrate
control is bound by the
CBR VBV buffer constraint parameter value
(Constant Bit .’]10-3000 0
R and therefore the instant (NOTE bitrate can be lower
ate) bitrate will be limited . .
and more stable than target due to bits saving
) when bitrateMode =0, please
refer to bitrateMode
parameter description for
more details)
Instant bitrate (per second) is
constrained by vbvMaxRate
arameter value
Compared to CBR mode, P
Constrained VBR Constral.ned V,BR mode Average bitrate <= bitrate
. allows higher instant .
(Constrained) value >= bitrate |parameter value
) . bitrate, and therefore 10-3000 .
Variable Bit may produce higher setting
Rate) (NOTE — bitrate can be lower

than target due to bits saving
when bitrateMode =0, please
refer to bitrateMode
parameter description for
more details)

NETINT © 2024

Page 67 of 228

Quadra Integration & Programming Guide

" NETINT

Constant Rate
Factor)

by a maximum bitrate
limit. (The user may

bitrate limit is
implicitly set to

also add a minimum be equa\l to
bitrate limit if needed) bitrate
parameter)

RaREtats Brief Definition vbvBufferSize [vbvMaxRate Runtime b'trat? varlatlor.i
control compared to bitrate setting

InC d CRF q value >= bitrate

n Lappe mode, setting

the encoder attempts (NOTE — if . .
Canoed CRE to maintain constant vbvMaxRate is Instant _bltrate (p.er second) is
(Capp o subjective quality, not set, constraltned bly bitrate

oo . . arameter value
PP while bitrate is capped |10-3000 maximum P

Average bitrate <= bitrate
parameter value

fillerEnable

When enabled, the HRD compliance check algorithm can add filler data when the VBV
(CPB) buffer underflows. This parameter enables rate control and HRD if not already
enabled. i.e. RcEnable and vbvBufferSize will become 1 and 3000 respectively.

Enabling fillerEnable will:

1. Automatically set RcEnable = 1
2. Automatically set default vbvBufferSize 3000

NOTE — Enabling fillerEnable can slow down the encoder depending on the amount of
filler data added.

Not Applicable: AV1 and JPEG

Supported Values:

0: Disable
1: Enable

Default: 0

NETINT © 2024

Page 68 of 228

" NETINT
Quadra Integration & Programming Guide

picSkip
When enabled, the HRD algorithm can skip pictures when the VBV (CPB) buffer
overflows. HRD rate control is enabled when rcEnable is 1 and vbvBufferSize > 0.

If picSkip is enabled, and the maximum output size has been specified with either
MaxFrameSize(Deprecated), MaxFrameSize_Bits or MaxFrameSize_Bytes, then the
encoder will discard any frames whose output size exceeds the specified size.

NOTE — When enabled, the gopPresetldx must be 1, 3, 7,9, 10 (or 0 if the custom gop
encodes in consecutive order), lookaheadDepth and multicorelointMode must be 0

NOTE — picSkip can cause loss of SEI packets, do not enable picSkip if the application
requires SEl in the bitstream

Not Applicable: JPEG

Supported Values:
0: Disable
1: Enable

Default: 0

skipFrameEnable

When enabled, the encoded frame will be forced to be a skip frame, meaning that all
macroblocks are encoded as skip mode macroblocks when VBV buffer overflows.

NOTE — When enabled, the gopPresetldx must be 1, 3, 7,9, 10(or 0 if the customer gop
encodes in consecutive order). Otherwise, the video will have ghosting visual effects.

NOTE — This parameter can be used with maxConsecutiveSkipFrameNum, which can be
used to limit the maximum number of consecutive skip frames.

NOTE - Although it can limit the bit rate, there may be additional unknown issues.
Please use this parameter when you are clear about what you are doing.

Not Applicable: JPEG and AV1
Supported Values:

0: Disable

1: Enable

Default: 0

NETINT © 2024 Page 69 of 228

" NETINT
Quadra Integration & Programming Guide

maxConsecutiveSkipFrameNum

Specify the maximum number of consecutive skip frames. This parameter only takes
effect when the skipFrameEnable is enabled.

NOTE — A value that is too large may cause the video to appear sluggish. It is
recommended that the value be less than 5.

Not Applicable: JPEG and AV1
Supported Values:

Values greater than or equal to 0

Default: 1

NETINT © 2024 Page 70 of 228

" NETINT
Quadra Integration & Programming Guide

maxFrameSize -- DEPRECATED

NOTE - The maxFrameSize parameter has been deprecated and should NOT be used.
Use the more explicit maxFrameSize_Bytes parameter instead (see below), which is
equivalent of the maxFrameSize.

Using the new maxFrameSize_Bytes parameter will also make the Quadra application
code easier to understand.

Specifies the maximum allowable output byte count for any frame (please note the unit
of maxFrameSize is in bytes). While encoding, the encoder will re-encode the frame
with higher QP if the output byte count exceeds the maxFrameSize. This process will
continue until the output byte count becomes less than maxFrameSize. If the QP has
been increased to the maxQP but the output byte count still exceeds maxFrameSize, the
encoder will either produce the output, or if picSkip is enabled, it will discard the output
(see the picSkip parameter description).

Note that maxFrameSize is only valid if lowDelay is enabled. If lowDelay is disabled,
maxFrameSize parameter will be rejected. If lowDelay is enabled, but maxFrameSize is
not specified in the command line, libxcoder will set maxFrameSize to the default value,
which is % of the input frame size.

This feature can also be used to limit the maximum frame size to a multiple of the
average frame size, using the ratio keyword. For example, maxFrameSize=ratio[8] will
limit the maximum frame size to be no more than 8 times the average frame size
calculated by the libxcoder.

NOTE - If the bitrate or framerate is reconfigured via the libxcoder API, the encoder will
automatically adjust the maxFrameSize to adapt to the new bitrate or framerate. User
applications may also reconfigure the maxFrameSize via the libxcoder API to override
the encoder auto adjusted maxFrameSize value (see Libxcoder API Integration Guide).

Not Applicable: JPEG

Supported Values: Acceptable values range from the minimum of bitrate divided by
framerate, to the maximum of the input frame size

Default: /2 of input frame size

NOTE Quadra only supports using one of the 3 maxFrameSize parameters at a time. For
example, only use either the maxFrameSize (Deprecated), or the maxFrameSize_Bits or the
maxFrameSize_Bytes within the same command. It is recommended to use the
maxFrameSize_Bytes only.

NETINT © 2024 Page 71 of 228

" NETINT
Quadra Integration & Programming Guide

maxFrameSize_Bytes

NOTE - The maxFrameSize_Bytes parameter is equivalent of maxFrameSize which has
been deprecated. The user should use this more explicit maxFrameSize_Bytes
parameter rather than maxFrameSize to make the Quadra application code more
readable.

Specifies the maximum allowable output byte count for any frame. The size specified
with maxFrameSize_Bytes is bytes. While encoding, the encoder will re-encode the
frame with higher QP if the output byte count exceeds maxFrameSize_Bytes. This
process will continue until the output byte count becomes less than
maxFrameSize_Bytes. If the QP has been increased to the maxQP but the output byte
count still exceeds maxFrameSize_Bytes, the encoder will either produce the output, or
if picSkip is enabled, it will discard the output (see the picSkip parameter description).

Note that maxFrameSize_Bytes is only valid if lowDelay is enabled. If lowDelay is
disabled, the maxFrameSize_Bytes parameter will be rejected. If lowDelay is enabled,
but maxFrameSize_Bytes is not specified in the command line, the libxcoder will set
maxFrameSize_Bytes to the default value, which is ¥ the input frame size.

This feature can also be used to limit the maximum frame size to a multiple of the
average frame size, using the ratio keyword. For example, maxFrameSize_Bytes
=ratio[8] will limit the maximum frame size to be no more than 8 times the average
frame size calculated by the libxcoder.

NOTE - If specified maxFrameSize_bytes is less than (bitrate/framerate), libxcoder will
adjust maxFrameSize_bytes to (bitrate/framerate).

NOTE - If the bitrate or framerate is reconfigured via the libxcoder API (see the
Libxcoder API Integration Guide), then the encoder will automatically adjust the
maxFrameSize_Bytes to adapt to the new bitrate or framerate. User applications may
also reconfigure the maxFrameSize_Bytes via the libxcoder API to override the encoder
auto adjusted maxFrameSize_Bytes (again refer to the Libxcoder API Integration Guide).

Not Applicable: JPEG
Supported Values: Acceptable values range from ((bitrate / 8) / framerate) (min value, in
bytes), to input frame size (max value, in bytes)

NETINT © 2024 Page 72 of 228

" NETINT
Quadra Integration & Programming Guide

Default: % of input frame size in bytes

NOTE Quadra only supports using one of the 3 maxFrameSize parameters at a time. For
example, only use either the maxFrameSize (Deprecated), or the maxFrameSize _Bits or the
maxFrameSize_Bytes within the same command. It is recommended to use
maxFrameSize_Bytes only.

NETINT © 2024 Page 73 of 228

" NETINT
Quadra Integration & Programming Guide

maxFrameSize_Bits

Specifies the maximum allowable output bit count for any frame (please note the unit of
maxFrameSize_Bits is in bits). While encoding, the encoder will re-encode the frame
with a higher QP if the output bit count exceeds the maxFrameSize_Bits. This process
will continue until the output bit count becomes less than the maxFrameSize_Bits. If the
QP has been increased to the maxQP but the output bit count still exceeds
maxFrameSize_Bits, the encoder will either produce the output, or if picSkip is enabled
it will discard the output (see the picSkip parameter description).

Note that maxFrameSize_Bits is only valid if lowDelay is enabled. If lowDelay is
disabled, maxFrameSize_Bits parameter will be rejected. If lowDelay is enabled, but
maxFrameSize_Bits is not specified in the command line, libxcoder will set
maxFrameSize_Bits to the default value, which is % of the input frame size.

This feature can also be used to limit the maximum frame size to a multiple of the
average frame size, using the ratio keyword. For example, maxFrameSize_Bits =ratio[8]
will limit the maximum frame size to be no more than 8 times the average frame size
calculated by the libxcoder.

NOTE - If the bitrate or framerate is reconfigured via the libxcoder API (please refer to
the Libxcoder API Integration Guide), then the encoder will automatically adjust the
maxFrameSize_Bits to adapt to the new bitrate or framerate. User applications may also
reconfigure the maxFrameSize_Bits via the libxcoder API to override the encoder auto
adjusted maxFrameSize_Bits (refer to Libxcoder API Integration Guide).

Not Applicable: JPEG

Supported Values: Acceptable values range from bitrate divided by framerate (min) to
input frame size (max)

Default: % of input frame size in bits

NOTE Quadra only supports using one of the 3 maxFrameSize parameters at a time. For
example, only use either the maxFrameSize (Deprecated), or the maxFrameSize _Bits or the
maxFrameSize_Bytes within the same command.

It is recommended to use maxFrameSize_Bytes only.

NETINT © 2024 Page 74 of 228

" NETINT
Quadra Integration & Programming Guide

crf

This parameter enables Constant Rate Factor mode. CRF is a constant subjective quality
mode as opposed to normal rate control which adjusts quality to maintain constant
bitrate (CBR). On the other hand, it is not possible to predict the bitrate a CRF encode
will come out to. CRF values range from 0 to 51, lower value indicates higher quality and
higher value indicates lower quality. The recommended CRF value is 23.

CRF can also be used together with bitrate, vbvBufferSize, vbvMaxRate, vbvMinRate
parameters to maintain a consistent quality level, while the maximum (and minimum)
bitrate cap prevents the bitrate from exceeding a certain threshold — this mode is
referred to as Capped CRF mode. For more details and examples of Capped CRF encode
parameters, please refer to Section 8.4.4 “CRF & Capped CRF Examples”.

NOTE — When CRF mode is enabled, rcEnable must be 0

NOTE - CRF mode can be enabled with lookahead (lookaheadDepth 4~40) or without

lookahead (lookaheadDepth 0), the supported GOP patterns in each mode are

described below

e CRF with lookaheadDepth 0 — supports gopPresetldx -1 (adaptive gop), 0 (custom
gop), 1,4,5,8,9

e CRF with lookaheadDepth > 0 — supports gopPresetldx -1 (adaptive gop), 0 (custom
gop), 4,5,8,9

Not Applicable: JPEG
Supported Values: 0-51

Default: -1 (disabled)

NETINT © 2024 Page 75 of 228

" NETINT
Quadra Integration & Programming Guide

crfFloat

This parameter enables Constant Rate Factor mode. Supports floating-point numbers
with 2 decimal places. CRF is a constant subjective quality mode as opposed to normal
rate control which adjusts quality to maintain constant bitrate (CBR). On the other hand,
it is not possible to predict the bitrate a CRF encode will come out to. CRF values range
from 0.00 to 51.00, lower value indicates higher quality and higher value indicates lower
quality. The recommended CRF value is 23.00.

CRF can also be used together with bitrate, vbvBufferSize, vbovMaxRate, vbvMinRate
parameters to maintain a consistent quality level, while the maximum (and minimum)
bitrate cap prevents the bitrate from exceeding a certain threshold — this mode is
referred to as Capped CRF mode. For more details and examples of Capped CRF encode
parameters, please refer to Section 8.4.4 “CRF & Capped CRF Examples”.

NOTE When CRF mode is enabled, rcEnable must be 0

NOTE CRF mode can be enabled with lookahead (lookaheadDepth 4~40) or without

lookahead (lookaheadDepth 0), the supported GOP patterns in each mode are

described below

e CRF with lookaheadDepth 0 — supports gopPresetldx -1 (adaptive gop), 0 (custom
gop), 1,4,5,8,9

e CRF with lookaheadDepth > 0 — supports gopPresetldx -1 (adaptive gop), 0 (custom
gop), 4,5, 8,9

Not Applicable: JPEG
Supported Values: 0.00-51.00
Default: -1.00 (disabled)

crfMaxIframeEnable

The crfMaxIframeEnable parameter allows encoder to produce higher quality I-frames
in Capped CRF mode to improve quality. The side effect is that I-frame bit count will be
increased, which may not be ideal in scenarios where bitrate spike is unacceptable.

Not Applicable: JPEG
Supported Values:

0: Disable
1: Enable

NETINT © 2024 Page 76 of 228

" NETINT
Quadra Integration & Programming Guide

Default: 0

vbvMinRate

gcomp

The vbvMinRate parameter sets the minimum bitrate limit during encoding in Capped
CRF mode. (NOTE — unlike vbvMaxRate parameter which takes effect in both
Constrained VBR mode and Capped CRF mode, vbvMinRate only takes effect in Capped
CRF mode.)

In Capped CRF mode, if vbvMinRate is not set, the encoder will not constrain bitrate by
a minimum bitrate limit (only limit maximum bitrate). If vbvMinRate is set, the encoder
will produce more bits to meet the minimum bitrate, which may also raise quality to be
higher than the specified consistent quality level (which depends on crf parameter
value) when bits required at specified quality level is lower than the minimum bitrate.

Capped CRF mode sample FFmpeg command with vbvMinRate —

ffmpeg -f rawvideo -pix fmt yuv420p -s 1920x1080 -r 30.0 -i
inputl920x1080.yuv -c:v h265 ni quadra enc -xcoder-params
"gopPresetIdx=5:RcEnable=0:crf=23:1oo0kAheadDepth=10:vbvBuffers
ize=1000:bitrate= 3200000:vbvMinRate=1000000"
outputl1920x1080.h265

NOTE - vbvMinRate must be <= bitrate. Also note that encoder will reject configuration
if vovMinRate > bitrate

Not Applicable: JPEG

Supported Values: 0 (disable), or any value <= bitrate. Encoder will reject configuration if
vbvMaxRate > bitrate.

Default: 0

This parameter affects how much bitrate is given to important scenes as opposed to
unimportant scenes for subjective quality. Only effective in CRF mode.

NOTE — qcomp takes effects only if crf is set

NETINT © 2024 Page 77 of 228

" NETINT
Quadra Integration & Programming Guide

Not Applicable: JPEG
Supported Values: 0.0 to 1.0

Default: 0.6

ipRatio
Modifies average I-frames bit count increase as compared to P-frames. Higher values
increase the quality of I-frames generated. Only effective in CRF mode.
NOTE - ipRatio takes effects only if crf is set. If want to enable ipRatio in CBR or VBR
mode, should set enableipRatio to 1.

Not Applicable: JPEG
Supported Values: 0.01 to 10.0
Default: 1.40

enableipRatio
Enable or disable the ipRatio when in CBR and VBR mode. This parameter only affect
ipRatio in CBR and VBR mode. If crf is set, ipRatio always works, regardless of whether
enableipRatio is enabled or not.
NOTE - If you donnot want to using ipRatio in CBR or VBR, please also not setting
enableipRatio either.

Not Applicable: JPEG
Supported Values: 0 to 1
Default: 0

iFrameSizeRatio
Specifies the ratio of | frame size to default | frame size. The ratio of the frame size is not
exactly the same as the specified ratio, they are just approximate. This is influenced by
different bitrate control algorithms.
NOTE - Please do not use ipRatio and iFrameSizeratio together.

Not Applicable: JPEG
Supported Values: integer 1 to 300
Default: 100

pbRatio

NETINT © 2024 Page 78 of 228

" NETINT
Quadra Integration & Programming Guide

Modifies average B-frames bit count decrease as compared to P-frames. Higher values
decrease the quality of B-frames generated. Only effective in CRF mode.

NOTE - pbRatio takes effects only if crf is set

Not Applicable: JPEG
Supported Values: 0.01 to 10.0
Default: 1.30

cplxDecay
This parameter affects how fast the past frames complexity decays when encoder
decides current frame quantization based on complexity. Only effective in CRF mode.

NOTE — cplxDecay takes effects only if crf is set

Not Applicable: JPEG
Supported Values: 0.1 to 1.0
Default: 0.5

chromaQpOffset
Offset of Cb/Cr chroma quantization from the luma quantization selected by rate
control. This is a general way to specify encoder spending more or less bits on the
chroma channel.

Not Applicable: JPEG
Supported Values: -12 to 12
Default: 0

hvsQPEnable

Enable or disable block level QP adjustment for subjective quality enhancement.

Not Applicable: JPEG
Supported Values:
0: Disable
1: Enable
Default: 0

NETINT © 2024 Page 79 of 228

" NETINT
Quadra Integration & Programming Guide

hvsBaseMbComplexity
Base complexity of block level QP adjustment for subjective quality. A higher base
complexity value will result in higher subjective quality, at the cost of increased bit
count. In low target bitrate use case, increasing base complexity value may cause actual
bitrate to be higher than the target bitrate. Default base complexity value is 15.

NOTE — hvsBaseMbComplexity only takes effects if hvsQPEnable is set to 1

Not Applicable: JPEG
Supported Values: 0 to 31
Default: 15

culLevelRCEnable

Enable or disable coding unit level rate control.

NOTE - If this flag is 1 and intraPeriod is small (i.e. <30), | frame flickering for static scene
can be observed. If this happens, either set tolCtbRcIntra=-1 to disable CU level rate
control of I-frames, or increase tolCtbRcIntra>1 so that CU level rate control will give I-
frame bits large tolerance to work around this issue.

Applicable: This value is valid when RCEnable is 1 (ABR or CBR mode), or when crf,
bitrate, and vbvBufferSize are set (Capped CRF mode)
Not Applicable: JPEG
Supported Values:
0: Disable
1: Enable
Default: 0

NETINT © 2024 Page 80 of 228

" NETINT
Quadra Integration & Programming Guide

tolCtbRciInter
Tolerance of CU level rate control for P-frames and B-frames (aka INTER frames). CU
level rate control will enforce INTER frame bits limit within the range of: [ExpectedBits *
(1 — tolCtbRcInter), ExpectedBits * (1 + tolCtbRclInter)], except for -1 and 0 as described
below:
If tolCtbRclInter == -1, CU level rate control is disabled for INTER frames
If tolCtbRclInter == 0, CU level rate control adjust INTER frames bits according to the
current VBV buffer level. The total VBV buffer size can be configured by vbvBufferSize.

NOTE - tolCtbRclInter only takes effects if cuLevelRCEnable is set to 1

Not Applicable: JPEG

Supported Values:

=-1: CU level rate control is disabled for P/B-frames

= 0: CU level rate control adjust P/B-frame bits according to current VBV buffer
level

> 0: CU level rate control adjust P/B-frames bits according to the tolerance
setting, which is applied to the target picture size as described above

Default: 0.1

tolCtbRciIntra
Tolerance of CU level rate control for I-frames (aka INTRA frames). CU level rate control
will enforce INTRA frame bits limit within the range of: [ExpectedBits * (1 —
tolCtbRclIntra), ExpectedBits * (1 + tolCtbRclIntra)], except for -1 and 0 as described
below:
If tolCtbRclIntra == -1, CU level rate control is disabled for I-frames
If tolCtbRclIntra == 0, CU level rate control adjust I-frames bits according to the current
VBV buffer level. The total VBV buffer size can be configured by vbvBufferSize.

NOTE — tolCtbRclIntra only takes effects if cuLevelRCEnable is set to 1

Not Applicable: JPEG
Supported Values:

=-1: CU level rate control is disabled for I-frames

= 0: CU level rate control adjust I-frames bits according to the current VBV buffer
level

> 0: CU level rate control adjust I-frames bits according to the tolerance setting,
which is applied to the target picture size as described above
Default: 0.1

NETINT © 2024 Page 81 of 228

" NETINT
Quadra Integration & Programming Guide

rcQpDeltaRange
Max absolute value of CU/MB QP delta relative to frame QP in CTB RC.
It controls maximum range CU/MB QP is allowed to vary within a frame.

NOTE - rcQpDeltaRange only takes effects if cuLevelRCEnable = 1 or hvsQPEnable = 1.

Not Applicable: JPEG

Supported Values:
0to 15

0 = effectively disables cuLevelRCEnable and/or hvsQPEnable

Default: 10

bitrateWindow
Specifies the bitrate window length in frames. Rate control allocates bits for one
window and tries to match the target bitrate at the end of each window. This enforces
an average target bit rate within the window interval, allowing encoder to adapt to
changes of complexity on video input and variations on compression efficiency between
frames. Typically window begins with an intra frame, but this is not mandatory.

By default bitrateWindow = intraPeriod

If intraPeriod = O (infinite period), bitrateWindow = 150

Not Applicable: JPEG
Supported Values: 1 to 300

Default: equals intraPeriod

NETINT © 2024 Page 82 of 228

" NETINT
Quadra Integration & Programming Guide

ctbRowQpStep

The maximum accumulated QP adjustment step per CTB Row allowed by CU level rate
control. Increasing ctbRowQpStep helps reduce instant bitrate spike / overshoot, but it
may also reduce compression efficiency. CU level rate control QP step per CTB is
calculated by

QP_step_per_CTB = MIN((ctbRowQpStep / Ctb_per_Row),4).

If ctbRowQpStep ==0, Quadra will use pre-defined ctbRowQpStep value [4] for
H.264 and [16] for HEVC.

NOTE — The maximum effective value of ctbRowQpStep = CTB per Row * 4. For example,
if input resolution is 1920x1080, CTB per row = 1920 / 64 = 30, and maximum effective
ctbRowQpStep = 30 * 4 = 120. A larger value is also accepted, but will have the same
effects as the maximum effective value.

NOTE — ctbRowQpStep only takes effects if cuLevelRCEnable is set to 1

Not Applicable: JPEG

Supported Values: 0 to 500, setting O will cause Quadra to use
pre-defined ctbRowQpStep value [4] for H.264 and [16] for HEVC

Default: 0

NETINT © 2024 Page 83 of 228

" NETINT
Quadra Integration & Programming Guide

8.4.1 Long Term Reference

The Libxcoder encoder configuration parameter longTermReferenceEnable is used to enable the
Long Term Reference (LTR) feature when opening an encoder instance.

The Long Term Reference is enabled by setting longTermReferenceEnable=1.

When longTermReferenceEnable=1, the IDR frames are automatically set as LTR (regardless of
longTermReferencelnterval or other settings).

When longTermReferenceEnable=1, the user can set the LTR by either one or both of these
methods:

1. Setthe LTR interval at configuration by longTermReferencelnterval, and/or change
LTR interval during run-time by libxcoder API

2. Set any frame as LTR during runt-time by libxcoder API

For more details regarding libxcoder APl integration, please refer to the Libxcoder API Integration
Guide, or Application Note APPS528 - Long Term Reference & Reference Invalidation
Application Note

NETINT © 2024 Page 84 of 228

" NETINT
Quadra Integration & Programming Guide

When the longTermReferenceEnable=1, the user can also set the number of LTRs (1 or 2) using
the longTermReferenceCount parameter.

Example 1: longTermReferenceEnable=1 or
longTermReferenceEnable=1:longTermReferencelnterval=0 will cause the IDR frame to be a long
term reference frame.

I IDR/LTR

Example 2:
longTermReferenceEnable=1:longTermReferencelnterval=10:longTermReferenceCount=2 will
cause the IDR frame to be the long term reference frame, and every 10" frame to also be a long
term reference frame.
‘ l IDR / LTR

Up to 2 LTPs to be preserved — E.g. Frame 20 replaces the oldest LTR frame 0, so that frame 10
and frame 20 are the current LTR frames.
I IDR / LTR

B -

NETINT © 2024 Page 85 of 228

" NETINT
Quadra Integration & Programming Guide

Example 3:

longTermReferenceEnable=1:longTermReferancelnterval=10:longTermReferenceCount=2, using
the libxcoder APl and setting frame 23 as LTR will cause up to 2 LTRs to be preserved — e.g frame
23 replaces the oldest LTR frame 10, so that frame 20 and frame 23 are the current LTR frames.

I IDR/LTR
|:| LTR

The next LTR will be frame 30 at LTR interval, replacing the oldest LTR frame 20, so that frame 23

and frame 30 are the current LTR frames.
| IDR/ LTR
2 2
9,
|:| LTR

2
"

NOTE - I-Frame clears all existing LTRs and resets LTR interval counter. I-Frame itself is
automatically set as the new LTR.

For example, if longTermReferencelnterval = 4, longTermReferenceCount = 2, intraPeriod = 15

- Frame 15 will be set as LTR1, Frame 19 will be set as LTR2

NETINT © 2024 Page 86 of 228

" NETINT
Quadra Integration & Programming Guide

8.4.2 Reference Invalidation

Reference invalidation is used by the receiver of the bitstream to invalidate and change the
encoding frames’ references when the received packet is corrupted (and therefore cannot be
referenced).

Since the need to invalidate reference only arises when the receiving end detects corrupted
frame during run-time, reference invalidation requires libxcoder API integration.

For more details regarding libxcoder APl integration, please refer to Libxcoder API Integration
Guide, or Application Note APPS528 - Long Term Reference & Reference Invalidation Application
Note

Reference Invalidation is illustrated below. Without reference invalidation Frame 24 refers to
Frames 23 and 20:

L e e s o o

19 poc=20 poc=21 poc=22 poc=23 poc=24 pc

3 20/20 21/21 22/22 23/23 24/24 2
00:00:00.333 00:00:00.366 00:00:00.400
< = = = -®

In the following example, encoding Frame 24 invalidates all references with frame number >= 21.
Since reference frame 23 is invalidated, Frame 24 now refers to Frames 20 and 16

NOTE - The frame number should be incremented for every frame sent to the encoder
(regardless of whether the encoder drops the output due to picSkip / MaxFrameSize /
MaxFrameSize_Bytes or MaxFrameSize_Bits). Also note that unlike poc, the frame number
should not be reset to 0 upon I-frame.

I ~ [' m
ARELSRE SRR R R N I IR N
l_ ' _43 JLA i RS »iku i 4Lu I
B B B B B B B B B B
=15 poc=16 poc=17 poc=18 poc=19 poc=20 poc=21 poc=22 poc=23 poc=24 1
/15 16/16 17/17 18/18 19/19 20/20 21/21 22/22 23/23 24/24
00:00:00.266 00:00:00.300 00:00:00.333 00:00:00.366 00:00:00.400
e <- - <- - - = = < 2

NETINT © 2024 Page 87 of 228

" NETINT
Quadra Integration & Programming Guide

8.4.3 Gop Pattern Settings

Quadra supports three ways to set the gop patterns. The first method is the default method,
where gopPresetldx = -1 or is not set. By default, encoder uses Adaptive Gop, for which the
encoder dynamically adjusts gop pattern while encoding. The second method is setting custom
gop structures via xcoder-gop parameters, where gopPresetldx must be set to 0. The third
method is the preset gop structure, where gopPresetldx can be set from 1 to 10.

Now we will introduce the custom gop structure and predefined gop structure in detail. Later,
some commonly used gop patterns are shown as examples.

NETINT © 2024 Page 88 of 228

Quadra Integration & Programming Guide

8431 Custom Gop Structure

" NETINT

The following table lists the custom gop parameters, xcoder-gop.

NOTE - The order of the custom GOP parameters does not matter. E.g. g2numRefPics can be
placed before gOnumRefPics

Quadra Custom Gop Parameters (xcoder-gop)

Parameter Values Description

customGopSize 1to8 Specifies size of custom GOP pattern.
NOTE - in following frame parameters, prefix g0 means
this setting corresponds to the 1st frame in the gop
structure, g1 corresponds to the 2nd frame in gop
structure, and so on
NOTE - Number of frames in gop structure (e.g. g0, g1, ...)
must match customGopSize

Frame parameters

g0pocOffset 1 to gop size POC (display order) of the frame within a GOP, ranging
from 1 to gop size

g0QpOffset -51to 51 Delta QP, will be added to the frame QP to set the final
QP

gOtemporalld 0 temporal layer ID
NOTE — only supports temporal ID 0

g0picType 1: P frame Frame type, can be either P or B frame

2: B frame
gOnumRefPics 1 to gop size Number of reference pictures kept for this frame,

including references for current and future pictures.
NOTE - in the following Reference List parameters, prefix
gOrefPicO means the setting corresponds to 1st reference
frame, gOrefPicl corresponds to 2nd reference frame,
and so on

NOTE - if a reference frame will be referenced by future
frame(s) but is not referenced by the current frame, it
would need to be included in current frame reference list
as well.

For example, in hierarchical-P GOP pattern (see Custom
GOP Example 3), Frame 3 only references Frame 2, but its
reference list must also include Frame O for Frame 4 to
reference; therefore g2numRefPics=2

NOTE - Number of Reference List parameters must match
gOnumRefPics

NETINT © 2024

Page 89 of 228

Quadra Integration & Programming Guide

" NETINT

Reference List parameters

gOrefPicO

- (gop size) to
gop size

Ois not
allowed

Delta POC of the reference picture, relative to the POC of
the current frame
NOTE - gOrefPicO cannot be 0, since a picture cannot

refer to itself

NOTE — the index of reference frames (E.g. gOrefPicO,

gOrefPic1, etc.) in the reference list must follow order

described below

1. Forward references (past) must precede Backward
references (future)

2. Forward references (past) must be in poc order High
to Low

3. Backward references (future) must be in poc order
Low to High

The purpose is to assign lower indices to reference

frames closet to the current frame in display order,

because these are the reference frames which are most

often used for reference, and lower reference index helps

to reduce bit count

For example, in hierarchical-P GOP pattern (see Custom

GOP Example 3), Frame 3 reference list must assign index

0 (g2refPic0) to Frame 2 (g2refPic0=-1), and assign index

1 (g2refPicl) to Frame 0 (g2refPic1=-3)

gOrefPicOUsed

0: Not
referenced by
current frame
1: Referenced
by current
frame

Specifies whether each reference frame in reference list is
used in current (1) or future (0)

Custom GOP Example 1 (GOP size 2, low delay):

NETINT © 2024

Page 90 of 228

" NETINT
Quadra Integration & Programming Guide

ffmpeg -y -f rawvideo -pix_fmt yuv420p -s:v 1440x1080 -r 24 -i input1440x1080.yuv -c:v

h264 ni_quadra_enc -vframes 50 -xcoder-params
'profile=2:level=6:RcEnable=1:bitrate=10000000:intraPeriod=0:gopPresetldx=0"' -xcoder-gop
"customGopSize=2:g0pocOffset=1:g0QpOffset=0:g0temporalld=0:g0picType=2:g0numRefPics=2:
g0refPic0=-1:g0refPicOUsed=1:g0refPic1=-
3:g0refPiclUsed=1:g1pocOffset=2:g1QpOffset=0:gltemporalld=0:glpicType=2:glnumRefPics=2:
glrefPicO=-1:glrefPicOUsed=1:glrefPic1=-2:glrefPiclUsed=1" -enc O output1440x1080.h264

Custom GOP Example 2 (Hierarchical-B with GOP size 4):

Figure 1. Hierarchical-B With Gop-Size = 4

ffmpeg -y -f rawvideo -pix_fmt yuv420p -s:v 1440x1080 -r 24 -i input1440x1080.yuv -c:v

h264 ni_quadra_enc -vframes 50 -xcoder-params
'profile=2:level=6:RcEnable=1:bitrate=10000000:intraPeriod=0:gopPresetldx=0"' -xcoder-gop
"customGopSize=4:g0pocOffset=4:g0QpOffset=0:g0temporalld=0:g0picType=1:g0numRefPics=1:
gOrefPic0=-
4:g0refPicOUsed=1:g1pocOffset=2:g1QpO0ffset=0:gltemporalld=0:g1picType=2:glnumRefPics=2:
glrefPic0=-
2:glrefPicOUsed=1:glrefPic1=2:glrefPiclUsed=1:g2pocOffset=1:g2QpOffset=0:g2temporalld=0:
g2picType=2:g2numRefPics=3:g2refPicO=-
1:g2refPicOUsed=1:g2refPic1=1:g2refPiclUsed=1:g2refPic2=3:g2refPic2Used=0:g3pocOffset=3:g
3QpOffset=0:g3temporalld=0:g3picType=2:g3numRefPics=2:g3refPicO=-
1:g3refPicOUsed=1:g3refPic1=1:g3refPiclUsed=1" -enc 0 output1440x1080.h264

NETINT © 2024 Page 91 of 228

" NETINT
Quadra Integration & Programming Guide

Custom GOP Example 3 (Hierarchical-P with GOP size 4):

Figure 2. Hierarchical-P With Gop-Size = 4

ffmpeg -y -f rawvideo -pix_fmt yuv420p -s:v 1440x1080 -r 24 -i input1440x1080.yuv -c:v
h264_ni_quadra_enc -vframes 50 -xcoder-params
'profile=2:level=6:RcEnable=1:bitrate=10000000:intraPeriod=0:gopPresetldx=0"' -xcoder-gop "
customGopSize=4:g0pocOffset=1:g0QpOffset=0:g0temporalld=0:g0picType=1:g0numRefPics=1:g
OrefPicO=-
1:g0refPicOUsed=1:g1pocOffset=2:g1QpOffset=0:gltemporalld=0:glpicType=1:glnumRefPics=1:
glrefPic0=-
2:g1refPicOUsed=1:g2pocOffset=3:g2QpOffset=0:g2temporalld=0:g2picType=1:g2numRefPics=2:
g2refPic0=-1:g2refPicOUsed=1:g2refPicl=-
3:g2refPic1Used=0:g3pocOffset=4:g3QpO0ffset=0:g3temporalld=0:g3picType=1:g3numRefPics=1:
g3refPic0=-4:g3refPicOUsed=1" -enc 0 output1440x1080.h264

NETINT © 2024 Page 92 of 228

" NETINT
Quadra Integration & Programming Guide

8.4.3.2 Pre-defined GOP Structure

The gopPresetldx are pre-configured gop patterns that fit most applications without the
complexity of configuring a custom gop.

According to the different values set for the gopPresetldx, lookAheadDepth, and
enable2PassGop parameters, the gop structure can be divided into two types:

1. 1-pass, lookaheadDepth =0, enable2PassGop takes no effects, the gop structure is
determined by gopPresetldx.

2. 2-pass, lookaheadDepth > 0, the gop structure is determined by gopPresetldx and
enable2PassGop.

NETINT © 2024 Page 93 of 228

" NETINT
Quadra Integration & Programming Guide

Here are the predefined GOP structures for H.264 / H.265 / AV1.
Preset GOP Patterns for AVC / HEVC / AV1 1-pass encode (lookaheadDepth = 0)

*NOTE — temporal ID field only takes effects when parameter temporallLayersEnable is set to 1.
When temporallLayersEnable is not specified (default 0), all frames are assigned temporal ID 0

gopPresetl | frame | Typ POC QP num of | Referen | used_by | tempora

dx e offset ref ce List cur 1D *

-1 Adaptive Gop(default)

0 Custom Gop

1 1] | 1 | 1| o | x | x 0

2 obsolete

3 1 B 1 1 2 -1-2 0

4 1 P 2 1 1 -2 0
2 B 1 3 2 -11 11 1

5 1 P 4 1 1 -4 1 0
2 B 2 3 2 =22 11 1
3 B 1 5 3 -113 110 2
4 B 3 5 2 -11 11 2

6 obsolete

7 1 B 1 5 2 -1-5 11 0
2 B 2 3 2 -1-2 11 0
3 B 3 5 2 -1-3 11 0
4 B 4 1 2 -1-4 11 0

8 1 B 8 1 2 -8-16 11 0
2 B 4 3 2 44 11 1
3 B 2 5 3 -226 110 2
4 B 1 7 4 -1137 1100 3
5 B 3 7 4 -1-315 (| 1010 3
6 B 6 5 3 -2-62 101 2
7 B 5 7 4 -1-513 1010 3
8 B 7 7 3 -1-71 101 3

9 1 P 1 1 1 -1 1 0

10 1 P 1 5 1 -1 1 2
2 P 2 3 1 -2 1 1
3 P 3 5 2 -1-3 10 2
4 P 4 1 1 -4 1 0

NETINT © 2024 Page 94 of 228

" NETINT
Quadra Integration & Programming Guide

Preset GOP Patterns for AVC / HEVC / AV1 2-pass encode (lookaheadDepth > 0 and
enable2PassGop = 0)

*NOTE — temporal ID field only takes effects when parameter temporalLayersEnable is set to 1.
When temporallayersEnable is not specified (default 0), all frames are assigned temporal ID 0

*NOTE — 2-pass encode algorithm adjusts QP. Therefore, picQp may not be reflected in coded
frame

gopPresetld | frame | Typ | PO QP num of Referenc | used_by | temporal

X e C offset ref e List cur ID *

-1 Adaptive Gop(default)

0 Custom Gop

1 Not supported for 2-pass

2 obsolete

3 Not supported for 2-pass

4 1 B 2 1 2 -2-4 11 0
2 B 1 3 2 -11 11 1

5 1 B 4 1 2 -4 -8 11 0
2 B 2 3 2 22 11 1
3 B 1 5 3 -113 110 2
4 B 3 5 3 -1-31 101 2

6 obsolete

7 Not supported for 2-pass

8 1 B 8 1 2 -8-16 11 0
2 B 4 3 2 -4.4 11 1
3 B 2 5 3 -226 110 2
4 B 1 7 4 -1137 1100 3
5 B 3 7 4 -1-315 1010 3
6 B 6 5 3 -2-62 101 2
7 B 5 7 4 -1-513 1010 3
8 B 7 7 3 -1-71 101 3

9 1 P 1 1 1 -1 1 0

10 Not supported for 2-pass

NETINT © 2024 Page 95 of 228

" NETINT
Quadra Integration & Programming Guide

Preset GOP Patterns for AVC / HEVC / AV1 2-pass encode (lookaheadDepth > 0 and
enable2PassGop=1)

gopPresetld | frame | Typ | PO QP num of Referenc | used by | temporal

X e C offset ref e List cur ID *

-1 Adaptive Gop(default)

0 Custom Gop

1 Not supported for 2-pass

2 obsolete

3 Not supported for 2-pass

4 1 P 2 1 1 -2 1 0
2 B 1 3 2 -11 11 1

5 1 P 4 1 1 -4 1 0
2 B 2 3 2 -22 11 1
3 B 1 5 3 -113 110 2
4 B 3 5 2 -11 11 2

6 obsolete

7 Not supported for 2-pass

8 1 P 8 1 1 -8 1 0
2 B 4 3 2 -44 11 1
3 B 2 5 3 -226 110 2
4 B 1 7 4 -1137 1100 3
5 B 3 7 3 -115 110 3
6 B 6 5 2 -22 11 2
7 B 5 7 3 -113 110 3
8 B 7 7 2 -11 11 3

9 1 P 1 1 1 -1 1 0

10 Not supported for 2-pass

NETINT © 2024 Page 96 of 228

" NETINT
Quadra Integration & Programming Guide

8.4.3.3 Description of GOP Patterns

The following is the gop structure for when gopPresetldx=5, lookaheadDepth = 0 or for when
gopPresetldx = 5, lookahead > 0, enable2Pass=1.

B B
B
| P
Display order (POC) 0 1 2 3 4
Encoding Order 0 3 2 4 1

The four frames in this gop are described below in decoding order.

e Frame 1is a P frame with POC 4, referencing one frame with POC 0. The reference frame is
defined by delta POC value relative to current frame. In this case it is -4.

e Frame 2 is a B frame with POC 2, referencing two frames with POC 0 and 4 respectively. So
its reference frames are listed as -2 and 2.

e Frame 3 is a B frame with POC 1, referencing two frames with POC 0 and 2 respectively. It
also needs to keep the frame with POC 4 as a reference frame to be used in future. So its
reference frame listis -1, 1 and 3.

e Frame 4 is a B frame with POC 3, referencing two frames with POC 2 and 4 respectively. Its
reference list is -1 and 1.

NETINT © 2024 Page 97 of 228

" NETINT
Quadra Integration & Programming Guide

The corresponding GOP structure table is show below, where:

e QP Offset will be added to the QP parameter to set the final QP;
e Used by Current Frame specifies whether each reference frame in Reference List is used in
current(1) or future(0).

Frame Type POC QP Offset | Number of | Reference | used by cur
References List
1 P 4 1 1 -4 1
2 B 2 3 2 =22 11
3 B 1 5 3 -113 110
4 B 3 5 2 -11 11

The diagrams of all gop patterns for 1 pass (lookAheadDepth=0) are shown below. P and B
pictures can have one to multiple reference frames as illustrated by the arrows. The inter frame
immediately after I-frame is encoded as P-frame, although it appears in the table as B-frame
because only one reference frame is available:

Diagram of gopPresetldx=1

POC 0 1 2 3 4
Encoding Order 0 1 2 3 4

Diagram of gopPresetldx=3

t—7 B
[I
POC 0 1 2 3 4
Encoding Order 0 1 2 3 4

NETINT © 2024 Page 98 of 228

Quadra Integration & Programming Guide

Diagram of gopPresetldx=4

POC

Encoding Order

Diagram of gopPresetldx=5

Display order (POC)

Encoding Order

Diagram of gopPresetldx=7

0
0

" NETINT

POC 0 1

Encoding Order 0 1

NETINT © 2024

Page 99 of 228

" NETINT
Quadra Integration & Programming Guide

Diagram of gopPresetldx=8

B B B B
B B
| B P
1 [
POC 0 1 2 3 4 5 6 7 8
Encoding Order 0 4 3 5 2 7 6 8 1

Diagram of gopPresetldx=9

le——| le— P | le——
POC 0 1 2 3 4
Encoding Order 0 1 2 3 4

Note that frame number count is relative to adjacent frames. For example, in the gopPresetldx=9
diagram above, if the user sees encoding order frame number 2 as frame 0, the adjacent frame
numbers should change accordingly. The following diagram shows the case when the user sees
encoding order frame number 2 as 0 in the diagram above. This helps to better interpret the
indexes on the table.

r—| — P le——
POC -2 -1 0 1 2
Encoding Order -2 -1 0 1 2

NETINT © 2024 Page 100 of 228

" NETINT
Quadra Integration & Programming Guide

Diagram of gopPresetldx=10

e e — P P« P P le—
|
POC 0 1 2 3 4 5 6 7 8
Encoding Order 0 1 2 3 4 5 6 7 8

NETINT © 2024 Page 101 of 228

Quadra Integration & Programming Guide

" NETINT

The diagrams of gop patterns for 2 pass (2-pass & enable2PassGop=0) are shown below:

Diagram of gopPresetldx=4 for 2 pass

B
7
POC 0 1 3 5 6
Encoding Order 0 2 4 6 5
Diagram of gopPresetldx=5 for 2 pass
B B
B
| P
Display order (POC) o} 1 2 3 4
Encoding Order 0 3 2 4 1
Diagram of gopPresetldx=8 for 2 pass
B B B B
B B
| B P
t [
POC 0 1 2 3 4 5 6 7 8
Encoding Order 0 4 3 5 2 7 6 8 1

NETINT © 2024

Page 102 of 228

" NETINT
Quadra Integration & Programming Guide

8.4.4 CRF & Capped CRF Examples

CRF: Constant Rate Factor Mode, enabled by setting the rate factor parameter crf. With CRF the
encoder varies the bitrate to maintain constant subjective quality.

CRF Sample Command

ffmpeg -f rawvideo -pix_fmt yuv420p -s 1920x1080 -r 30.0 -i input1920x1080.yuv -c:v h265_ni_quadra_enc -
xcoder-params "gopPresetldx=5:RcEnable=0:crf=23:lookAheadDepth=10" output1920x1080.h265

Capped CRF: Capped Constant Rate Factor Mode is enabled by setting the rate factor parameter
crf together with bitrate, vbvBufferSize, vbvMaxRate (optional), vbvMinRate (optional). Capped
CRF combines the CRF mode with a maximum bitrate limit. In this approach, CRF is used to
ensure a consistent quality level, while the maximum bitrate cap prevents the bitrate from
exceeding a certain threshold. This combination is particularly useful in scenarios where
maintaining quality is important but it's also crucial to not exceed bandwidth or storage
constraint.

Besides the maximum bitrate limit, the user may also set a minimum bitrate limit, so that
encoder will produce more bits to achieve higher quality in low volatile scenes which would
otherwise have produced bits less than the minimum bitrate limit.

Note that in Capped CRF mode, although the encoder attempts to maintain consistent subjective
quality, it is also required to adjust quality to meet the bitrate limit, and therefore consistent
quality is no longer guaranteed.

- Capped CRF requires bitrate and vbvBufferSize, these parameters define the size of the
VBV buffer, which is used to constraint bitrate.

- If vbvMaxRate is not set, encoder will take bitrate as the maximum bitrate limit. If
vbvMaxRate is set, the encoder will take vbviMaxRate as the maximum bitrate limit
instead.

- If vbvMinRate is not set, the encoder will not constrain bitrate by a minimum bitrate
limit. If vbvMinRate is set, the encoder will produce more bits to meet the minimum
bitrate, which may also raise quality to be higher than the specified consistent quality
level (which depends on crf parameter value) when bits required at specified quality
level is lower than the minimum bitrate.

- Please also refer to bitrate, vbvBufferSize, vbvMaxRate, vbvMinRate descriptions in
Section 8.4 “Encoding Parameters”

Capped CRF Sample Command (without vbvMaxRate and vbvMinRate)

NETINT © 2024 Page 103 of 228

" NETINT
Quadra Integration & Programming Guide

ffmpeg -f rawvideo -pix_fmt yuv420p -s 1920x1080 -r 30.0 -i input1920x1080.yuv -c:v h265_ni_quadra_enc -
xcoder-params "gopPresetldx=5:RcEnable=0:crf=23:lookAheadDepth=10:vbvBufferSize=1000:bitrate=
3200000" output1920x1080.h265

Capped CRF Sample Command (with vbvMaxRate)

ffmpeg -f rawvideo -pix_fmt yuv420p -s 1920x1080 -r 30.0 -i input1920x1080.yuv -c:v h265_ni_quadra_enc -
xcoder-params "gopPresetldx=5:RcEnable=0:crf=23:lookAheadDepth=10:vbvBufferSize=1000:bitrate=
3200000:vbvMaxRate=4000000" output1920x1080.h265

Capped CRF Sample Command (with vbvMinRate)

ffmpeg -f rawvideo -pix_fmt yuv420p -s 1920x1080 -r 30.0 -i input1920x1080.yuv -c:v h265_ni_quadra_enc -
xcoder-params "gopPresetldx=5:RcEnable=0:crf=23:lookAheadDepth=10:vbvBufferSize=1000:bitrate=
3200000:vbvMinRate=1000000" output1920x1080.h265

Capped CRF Sample Command (with vbvMaxRate and vbvMinRate)

ffmpeg -f rawvideo -pix_fmt yuv420p -s 1920x1080 -r 30.0 -i input1920x1080.yuv -c:v h265_ni_quadra_enc -
xcoder-params "gopPresetldx=5:RcEnable=0:crf=23:lookAheadDepth=10:vbvBufferSize=1000:bitrate=
3200000:vbvMaxRate=4000000:vbvMinRate=1000000" output1920x1080.h265

8.4.5 Encoder Limitations
General Restrictions:

Horizontal stride for luma and chroma needs to be 128-byte aligned, if not, the input needs to be
padded until it meets the requirement. Height needs to be even.

H.265 and AV1 2-Pass encode have the following restrictions:

1. If the input resolution width and height are not both aligned to 32-pixels, H.265 and AV1
2-Pass encode output may vary (encode output may mismatch)

AV1 encode has the following restrictions:

1. Requires FFmpeg version 4.0 or above

NETINT © 2024 Page 104 of 228

" NETINT
Quadra Integration & Programming Guide

2. HW limitation:

o Due to Quadra HW limitation, AV1 non-8x8-aligned input resolution will be
cropped
o If width is not 8-pixel aligned, width will be cropped
o E.g. Input resolution 854x480 -> output resolution will be cropped to
848x480
o If height is not 8-pixel aligned, height will be cropped
o E.g. Input resolution 960x540 -> output resolution will be cropped to
960x536

3. Input resolution restriction:
o width >=144 pixels

o height >= 128 pixels
o width <= 4096 pixels

height <= 4352 pixels
o width * height <= (4096 * 2304) pixels

O

NETINT © 2024 Page 105 of 228

" NETINT
Quadra Integration & Programming Guide

9 Decoder

The NETINT decoders h264 _ni_quadra_dec, h265_ni_quadra_dec, vp9_ni_quadra_dec, and
jpeg_ni_quadra_dec all use Quadra hardware for decoding. The Quadra decoder has 3 post
processors which can be enabled to perform cropping, scaling, and 10 to 8 bit conversion. We
refer to their outputs as Out0, Outl, and Out2. Out 0 is always enabled and Out1 and Out 2 may
be enabled as required. The order of operations in the post processor is cropping followed by
scaling.

The Quadra decoder supports decoding images from 144x144 to 8192x8192. For JPEG the range
is 48x48 to 8192x8192.

The limit of the input can be determined by the following formula:

Number of reference frames * (Picture width * Picture Height * 1.5 * ((Bit depth + 7)/8)) <=
989.4 MB

The NETINT decoder supports hardware and software AVFrames for output depending on the
out parameter. If out=sw (default), the decoder will return a software AVFrame. The software
AVFrame will require the YUV data to be transferred to the host. For software frames, only the
first decoder output is available. If out=hw, the decoder will use hardware frames and not return
the YUV data to the host but instead leave the YUV data on the hardware and return instead a
handle to the YUV frame. If multiple outputs are enabled, the firmware will return multiple
handles. This AVFrame will not contain pointers to a YUV frame data, but will point to the
hardware descriptors. A hardware frame can contain handles for up to 3 outputs of 8 or 10 bit
compressed YUV. In order to use a hardware AVFrame with an FFmpeg filter or soft encoder, the
YUV frame must be transferred to the host as a software frame by calling the FFmpeg
hwdownload filter. Note that most NETINT filters require a hardware frame.

See also APPS548 Codensity Quadra Software and Hardware Frames (YUVbypass) Application
Note to learn more about hardware frames.

JPEG supports 8 bit baseline only. There is no support for lossless or progressive decoding.

NETINT © 2024 Page 106 of 228

" NETINT
Quadra Integration & Programming Guide

Like the T408, the Quadra decoder will return any SEl payloads that we support to libxcoder as
part of the metadata. The SEls currently supported for decoding are t35 (close captions and
HDR10+ metadata), mastering display colour volume, content light level info, and alternative
transfer characteristics for HDR, pic timing and buffering period for HRD.

It should be noted that the character limit for an expression for decoder scaling or cropping is
twenty characters.

NETINT © 2024 Page 107 of 228

" NETINT
Quadra Integration & Programming Guide

9.1 Decoder Parameters

out

Specifies the output type of decoder output Out0. Specifies whether a hardware
or software frame is returned.

Supported Values:
sw: Software
hw: Hardware

Default: sw: Software

enableOutl

Enables Decoder output 1. Note that Decoder output O is always enabled. Outl
if enabled is always returned as a hardware frame.

Supported Values:
0: Disable
1: Enable

Default: O: Disable

enableOut2

Enables Decoder output 2. Note that Decoder output O is always enabled. Out2
if enabled is always returned as a hardware frame.

Supported Values:
0: Disable
1: Enable

Default: 0: Disable

force8Bit0

When enabled, 10 bit video on output 0 is converted to 8 bit output by shifting
down by 2 bits.

Not Applicable: JPEG, semiplanar0 = 2 with 10-bit input
Supported Values:

0: Disable

1: Enable
Default: O: Disable

NETINT © 2024 Page 108 of 228

" NETINT
Quadra Integration & Programming Guide

force8Bitl

When enabled, 10 bit video on output 1 is converted to 8 bit output by shifting
down by 2 bits.

Not Applicable: JPEG, semiplanarl = 2 with 10-bit input
Supported Values:

0: Disable

1: Enable
Default: O: Disable

force8Bit2

When enabled, 10 bit video on output 2 is converted to 8 bit output by shifting
down by 2 bits.

Not Applicable: JPEG, semiplanar2 = 2 with 10-bit input
Supported Values:

0: Disable

1: Enable
Default: O: Disable

semiplanarQ

When set to 0, the yuv420 format is used, main perk is that it is most compatible
with other HW blocks or SW.

When set to 1, yuv output 0 format will be in nv12 or p010le semiplanar format
depending on source bit-depth. Improves performance when memory usage is
high.

When set to 2, yuv output 0 format will be in a special compressed tiled format.
This format greatly improves performance when memory usage is high. Ideal for
large resolution 10-bit inputs. Must have HW frames enabled, VP9 not
supported, final decoder output resolution (after any crop or scale) must align to
multiples of 4, and only compatible with co-located encoder, ni_quadra_scale
and ni_quadra_overlay filters for downstream usage.

Supported Values:

0: Disable

1: Enable

2: Tiled mode
Default: O: Disable

semiplanarl

NETINT © 2024

Page 109 of 228

" NETINT
Quadra Integration & Programming Guide

When set to 0, the yuv420 format is used, main perk is that it is most compatible
with other HW blocks or SW.

When set to 1, yuv output 1 format will be in nv12 or p010le semiplanar format
depending on source bit-depth. Improves performance when memory usage is
high.

When set to 2, yuv output 1 format will be in a special compressed tiled format.
This format greatly improves performance when memory usage is high. Ideal for
large resolution 10-bit inputs. Must have HW frames enabled, VP9 not
supported, final decoder output resolution (after any crop or scale) must align to
multiples of 4, and only compatible with co-located encoder, ni_quadra_scale
and ni_quadra_overlay filters for downstream usage.

Supported Values:
0: Disable
1: Enable
2: Tiled mode
Default: 0: Disable

semiplanar2

NETINT © 2024

When set to 0, the yuv420 format is used, main perk is that it is most compatible
with other HW blocks or SW.

When set to 1, yuv output 2 format will be in nv12 or p010le semiplanar format
depending on source bit-depth. Improves performance when memory usage is
high.

When set to 2, yuv output 2 format will be in a special compressed tiled format.
This format greatly improves performance when memory usage is high. Ideal for
large resolution 10-bit inputs. Must have HW frames enabled, VP9 not
supported, final decoder output resolution (after any crop or scale) must align to
multiples of 4, and only compatible with co-located encoder, ni_quadra_scale
and ni_quadra_overlay filters for downstream usage.

Supported Values:

0: Disable

1: Enable

2: Tiled mode
Default: O: Disable

Page 110 of 228

" NETINT
Quadra Integration & Programming Guide

cropModeO

Specifies the crop mode for output 0. When set to auto, the cropping
parameters are determined from the bitstream. When set to manual, the
cropping parameters are specified by the crop parameters below.

Supported Values:
auto
manual

Default: auto

cropModel

Specifies the crop mode for output 1. When set to auto, the cropping
parameters are determined from the bitstream. When set to manual, the
cropping parameters are specified by the crop parameters below.

Supported Values:
auto
manual

Default: auto

cropMode2

crop0

NETINT © 2024

Specifies the crop mode for output 2. When set to auto, the cropping
parameters are determined from the bitstream. When set to manual, the
cropping parameters are specified by the crop parameters below.

Supported Values:
auto
manual

Default: auto

Cropping parameters for output 0. When manual mode is selected, specifies the
x and y coordinates where cropping begins and the width and height for
cropping. Existing header cropping info ignored. Note that the cropping
dimensions must be even, and the minimum cropped size is 48x48. Out of
bounds offsets will be resized to fit with corresponding width and height values.

Supported Values: W,H,X.Y.
Default: decoded picture width, decoded picture height, 0, 0

Page 111 of 228

" NETINT
Quadra Integration & Programming Guide

cropl

crop2

scale0

NETINT © 2024

Cropping parameters for output 1. specifies the x and y coordinates where
cropping begins and the width and height for cropping. Existing header cropping
info ignored. Note that the cropping dimensions must be even, and the
minimum cropped size is 48x48. Out of bounds offsets will be resized to fit with
corresponding width and height values.

Supported Values: W,H,X.Y.
Default: decoded picture width, decoded picture height, 0, 0

Cropping parameters for output 2. When manual mode is selected, specifies the
x and y coordinates where cropping begins and the width and height for
cropping. Existing header cropping info ignored. Note that the cropping
dimensions must be even, and the minimum cropped size is 48x48. Out of
bounds offsets will be resized to fit with corresponding width and height values.

Supported Values: W,H,X.Y.
Default: decoded picture width, decoded picture height, 0, 0

Specifies the width (w) and height (h) to scale decoder output 0. If not specified,
then no scaling is done. The width and height may be set to no larger than the
decoded output size. Note that scaling is applied after any cropping is done.
Note that the scaling dimensions must be even, and the minimum scaling size is
2x2.

Supported Values: W(Width)x H(Height)
Default: Disabled

Page 112 of 228

" NETINT
Quadra Integration & Programming Guide

scalel

scale2

Specifies the width (w) and height (h) to scale decoder output 1. If not specified,
then no scaling is done. The width and height may be set to no larger than the
decoded output size. Note that scaling is applied after any cropping is done.
Note that the scaling dimensions must be even, and the minimum scaling size is
2x2. Values are W,X,H.

Supported Values: W(Width)x H(Height)
Default: Disabled

Specifies the width (w) and height (h) to scale decoder output 2. If not specified,
then the no scaling is done. The width and height may be set to no larger than
the decoded output size. Note that scaling is applied after any cropping is done.
Note that the scaling dimensions must be even, and the minimum scaling size is
2x2.

Supported Values: W(Width)x H(Height)
Default: Disabled

multicoreJointMode

NETINT © 2024

Enables decoder multi-core mode where all 4 cores work together in parallel
(a.k.a. joint mode). When disabled (default), the decoder instances only use a
single video core to decode. When enabled, decoder instances uses all 4 video
decoding cores in parallel. Recommended only for high resolution decoding with
less than 4 instances, e.g. 8K decode. When more than 4 decoding instances are
used, enabling this feature will lower performance due to extra synchronization
overhead.

Not Applicable: JPEG or VP9.
Supported Values:

0: Disable

1: Enable
Default: O: Disable

Page 113 of 228

" NETINT
Quadra Integration & Programming Guide

lowDelay

Specifies whether to enable the low latency mode in decoding. When enabled,
libxcoder uses a different query method that returns upon frame ready to
reduce polling. This method only permits buffering of a single frame to minimize
delay and therefore will not work with non-sequentially decoded inputs. If
improper input is provided, the query will timeout within 4 seconds and self-
disable the low delay mode and decode as normal.

Note - If non-sequential input (B frames) is provided, this feature will disable.
Input also requires POC type =2

Note that in libxcoder decoder send/receive multi-thread mode, when enabled,
its value can be a positive integer value in milliseconds for threads
synchronization. It represents the time the sending thread waits before deciding it’s
in a deadlock and has to continue without waiting for receiving thread to signal.

Not Applicable: JPEG or VP9.
Supported Values:

0: Disable

Positive integer: Enable
Default: O: Disable

forceLowDelay
By Default, decoder low delay mode will be cancelled automatically if there’s
frame drop, i.e, a stream packet sent to decoder is not able to output as a
frame. With this option enabled, decoder won’t exit lowDelay mode when
frame drop happens. Instead, it will accumulate the number of dropped frames
and continue decoding in low delay mode. This option should only be applied
when it’s certain that the input stream can be decoded without reordering, else
enabling it will break the display order of frames.
Note - If non-sequential input (B frames) is provided, this feature will break the
display order of frames.

Not Applicable: JPEG or VP9.
Supported Values:

0: Disable

1: Enable
Default: 0: Disable

NETINT © 2024 Page 114 of 228

" NETINT
Quadra Integration & Programming Guide

enableLowDelayCheck
This function is used to detect the presence of B-frames in the input stream.
This function will only take effect when low-delay mode is enabled. If B frames
are detected in low delay mode, the low delay function will be turned off.
Note - If it can be determined that the decoding order of the input stream is
consistent with the display order, do not enable this function.

Not Applicable: JPEG or VP9.
Supported Values:

0: Disable

1: Enable
Default: 0: Disable

keepAliveTimeout

Specifies a session keep alive timeout value. This is a periodical
request/response between libxcoder and XCoder firmware that when timed out,
the session instance will be terminated by XCoder firmware. If this option is used
in conjunction with FFmpeg command option keep_alive_timeout then
keepAliveTimeout overrides keep_alive_timeout.

Supported Values: Integer in the range 1 to 100
Default: 3

customSeiPassthru

Specify a custom SEI type to passthrough.
Supported Values: Integer in the range -1 to 254

Default: -1

NETINT © 2024 Page 115 of 228

" NETINT
Quadra Integration & Programming Guide

enableAllSeiPassthru

All custom SEI types will be passed through if this is enabled. Also, when enabled, the
firmware SEI will be disabled.

Note — If the enableAllSeiPassthru parameter is enabled (set to 1) for decoding, then

the enableAllSeiPassthru parameter for encoding must also be enabled (set to 1).

Supported Values:
0: Disable
1: Enable

Default: 0

enableUserDataSeiPassthru
Enable user data unregistered SEI passthrough.
Supported Values: Integer of O (false) or 1 (true)

Default: O (false)

svctDecodinglLayer

Specifies the maximum temporal layer ID of frames to be decoded. The decoder
will discard frames with temporal layer ID higher than the value specified by this
parameter.

Note — this is only for H.264 SVC-T (temporal scalable video coding) decoding.
Default value is -1. By default, it will decode all the frames.

Supported Values: Integer in the range -1 to max integer

Default: -1

NETINT © 2024 Page 116 of 228

" NETINT
Quadra Integration & Programming Guide

ddrPriorityMode

Specifies the ddr priority mode. Only need set once at beginning, and it will
reset to default automatic after current process finish.

Note - this is a global setting, it will influence all running processes. It is best to
only use it when there is only one process. If there are multiple processes, other
processes fps performance may influence by this parameter.

Supported Values:

0: set default ddr mode

l:increase ddr priority for decoder and encoder
2:increase ddr priority for scaler

3:increase ddr priority for ai

Default: -1

NETINT © 2024 Page 117 of 228

" NETINT
Quadra Integration & Programming Guide

enablePpuScaleAdapt

This parameter is used to enable PPU scale long and short edge adaptation.

Assuming that long edge adaptation is enabled, when the resolution of the input
stream changes, the resolution of the output stream will be recalculated based
on the scaling ratio of the short edge for the long edge. For example, if the
initial input stream is 1920x1080, ppuscale is set to 960x360, and long edge
adaptation is enabled, At this point, the long side is 1920 and the short side is
1080, so the output short side remains unchanged and is 360. The long side is
calculated to be 1920x360/1080=640, and the output resolution is 640x360.
Then, when the input stream is changed to 1080x1920, the output stream will
be changed to 360x640. If the subsequent input stream is changed to 1080x720,
the output stream will be changed to 540x360. Therefore, when we set long
edge adaptation, we set the output resolution to 960x360, The resolution
change of the input stream is 1920x1080->1080x1920->1080x720, and the
output resolution is 640x360->360x640->540x360.

If short edge adaptation is enabled and other conditions remain unchanged, the
output resolution is 960x540->540x960->960x640.

Note - If the enablePpuScaleAdapt parameter is enabled, the resolution of ppu
output is aligned downwards by 2 by default. And We do not recommend using
this parameter, we recommend using “scaleOLongShortAdapt” instead.

Supported Values:

0: set default disable PpuScaleAdapt

1: set PpuScaleAdapt as adapt to long edge
2: set PpuScaleAdapt as adapt to short edge

Default: 0

ScaleOLongShortAdapt

NETINT © 2024

This parameter is used to enable PPU scale0O long and short edge adaptation.
You can check the detailed usage instructions in Chapter 9.2.

Supported Values:

0: set default disable PpuScaleOAdapt

1: set PpuScaleOAdapt as adapt to long edge
2: set PpuScaleOAdapt as adapt to short edge

Default: 0

Page 118 of 228

" NETINT
Quadra Integration & Programming Guide

ScalelLongShortAdapt

This parameter is used to enable PPU scalel long and short edge adaptation.
You can check the detailed usage instructions in Chapter 9.2.

Supported Values:

0: set default disable PpuScalelAdapt

1: set PpuScalelAdapt as adapt to long edge
2: set PpuScalelAdapt as adapt to short edge

Default: 0

Scale2LongShortAdapt

This parameter is used to enable PPU scale2 long and short edge adaptation.
You can check the detailed usage instructions in Chapter 9.2.

Supported Values:

0: set default disable PpuScale2Adapt

1: set PpuScale2Adapt as adapt to long edge
2: set PpuScale2Adapt as adapt to short edge

Default: 0

ScaleOResCeil

NETINT © 2024

This parameter sets the resolution of the ppu scale0 output to be rounded, and
the input parameter must be an even number. For example, [2, 4, 8, 16]. The
default is 2.

Supported Values: even number

Default: 2

Page 119 of 228

" NETINT
Quadra Integration & Programming Guide

Scale1ResCeil

This parameter sets the resolution of the ppu scalel output to be rounded, and

the input parameter must be an even number. For example, [2, 4, 8, 16]. The
default is 2.

Supported Values: even number

Default: 2

Scale2ResCeil

This parameter sets the resolution of the ppu scale2 output to be rounded, and

the input parameter must be an even number. For example, [2, 4, 8, 16]. The
default is 2.

Supported Values: even number

Default: 2

ScaleORound

This parameter is used to set whether the resolution of the ppu scale0 is
rounded up or down, with default rounding up.

Supported Values: [up, down]

Default: up

ScalelRound

This parameter is used to set whether the resolution of the ppu scalel is
rounded up or down, with default rounding up.

Supported Values: [up, down]

Default: up

NETINT © 2024 Page 120 of 228

" NETINT
Quadra Integration & Programming Guide

Scale2Round

This parameter is used to set whether the resolution of the ppu scale2 is
rounded up or down, with default rounding up.

Supported Values: [up, down]

Default: up

enablePpuScaleLimit

Enabling this parameter causes the output resolution of the PPU Scale to be
compared to the input stream resolution. If the PPU Scale is upward then an
error will be reported via exit.

For example, when the input stream is 720x360, and enablePpuScaleAdapt=1
(or = 2), and if the output resolution is 960x360 or 640x480, then the scaling will
exit with an error. If however, enablePpuScaleAdapt=0 then it will not exit with
an error, and it will output the frame resolution at 720x360 or 640x360. The
smallest resolution between the input and output will be chosen as the actual
output resolution.

Note - This only takes effect when the parameter enalePpuScaleAdapt is
enabled.

Supported Values:
0: Set disabled
1: Set enabled

Default: 0

skipPtsGuess

NETINT © 2024

When enable this parameter, it will pass through the decoder pts and skip
guessing correct pts in libxcoder. By default, this parameter is disabled.

Supported Values:
0: Disable
1: Enable

Default: 0: Disable

Page 121 of 228

" NETINT
Quadra Integration & Programming Guide

minPacketsDelay

Specifies whether to enable the minimum decoding delay packets feature. When
enabled, libxcoder increases its rate of polling the decoder and only permits
buffering of the minimum packets to minimize the delay.

Note — The minimum decoding delay packets is calculated according to the
related bitstream header SPS/PPS/VPS. If enable this option in multi-core
mode(multicoreJointMode), the decoding performance will decrease to non-
multi-core mode level.
Not Applicable: JPEG or VP9.
Supported Values:

0: Disable

1: Enable
Default: O: Disable

ecPolicy

NETINT © 2024

Specifies the error concealment policy that should be used by the decoder when
it encounters a broken bitstream. If a frame was not completely decoded
because of bitstream errors it can still be used as a reference in
H.264/HEVC/VP9 codecs, this will cause lingering artifacts in the subsequent
frames that reference one of the frames with decoding errors. The ecPolicy
controls how corrupted reference frames are handled during decoding.

Note - Applicable H.264/HEVC/VP9 to only.

Supported values:

tolerant: Try to replace corrupted reference frames other frames that
were previously decoded and are kept in the decoded pictures buffer. If no
replacement is available then decoding of all frames will be skipped until the
next I-frame.

ignore: Ignore any decoding errors in reference frames and keep using
them as is.

skip: If no replacement is available, skip decoding of all frames until the
next I-frame.

best_effort: Try to replace corrupted reference frames other frames that
were previously decoded and are kept in the decoded picture buffer. If no
replacement frame is available in the decoded pictures buffer, keep using the
original reference frame despite the decoding errors.

Default: best_effort

Page 122 of 228

" NETINT
Quadra Integration & Programming Guide

enableAdvancedEc

If a frame has not been completely decoded due to bitstream errors, or if a
partially decoded reference frame was used to decode the frame, the decoder
will conceal the errors in the output pictures. With enableAdvancedEc=1 (the
default), part of a previous frame will be copied over the broken part of a
partially decoded frame. If no good frame is available or enableAdvancedEc=0,
then a solid green color fill will be used to show the error. With
enableAdvancedEc=2, part of a previous frame will be copied over the broken
part of a partially decoded frame and the additional memory will be kept in
whole decoding life.

Note - Only applicable to H.264/HEVC/VP9. Not supported for tiled outputs.

Supported values:

0: Always use a solid green color to conceal partially decoded frames.

1 (default): Try to use the last good frame to conceal any picture errors

2 : Try to use the last good frame to conceal any picture errors in whole
decoding life.

In the partially decoded frames. With enableAdvancedEc=1, when a broken
bitstream is encountered, the decoder will allocate additional memory to hold
the last good frame so it can be used for concealment. That is, a slightly higher
memory usage must be expected when a corrupted stream is being fed into the
decoder, with this option enabled. With enableAdvancedEc=2, when the first
good frame is decoded, the decoder will allocate additional memory to hold the
last good frame so it can be used for concealment. That is, a slightly higher
memory usage must be expected whether the bitstream is a good or corrupted.

Default: 1 (enabled)

disableAdaptiveBuffers

NETINT © 2024

Specifies whether to disable adaptive buffers when bitstream sequence change.
When disableAdaptiveBuffers=1 and width/height of pictures is different from
previous width/height in sequence change, the picture buffers will re-allocate. It

Page 123 of 228

" NETINT
Quadra Integration & Programming Guide

takes a little time to re-configure decoder and save memory space if
width/height is from large to small.

Note — If this option is used and the output type of decoder is hw in transcoding
, the disableAdaptiveBuffers parameter of quadra encoder should be used at
same time.
Not Applicable: JPEG or VP9.
Supported Values:

0: Disable

1: enable
Default: O: Disable

The following is a Quadra decoder example using the postprocessor to do the scaling. Since the
cropping mode defaults to auto, any required cropping will be applied. For example, since the
picture height for 1080p is not divisible by 16, it must be padded to 1088 before H.264 encoding
thus the bitstream will contain cropping info to remove this padding back to a picture size of
1920x1080. The hwdownload filter will use our callback function to fetch the YUV data to write
to the output file. The downloaded YUV will already be scaled and so will require less CPU to
transfer it. If we do a transcode to a NETINT encoder, the YUV will not need downloading at all.

ffmpeg -y -c:v h264_ni_quadra_dec -dec 0 -xcoder-params "out=hw:scale0=1280x720:force8Bit0=1" -i
inputs/h264/Marketplace_1920x1080p30_300_10bit.h264 -vf hwdownload,format=yuv420p -c:v
rawvideo temp.yuv

Below is a Quadra decoder example using the postprocessor to do manual cropping. In this case
we want to change the aspect ratio of the output from 16:9 to 4:3. This is accomplished by
cropping the 1920x1088 decoded output to 1440x1080. We have started the cropping at x=240
and y=0 which removes 240 pixels from both the right and left sides of the picture and the
bottom 8 bits of padding from the bottom of the picture. Since hw is not specified in this case
we default to outputting a 10 bit software YUV frame.

ffmpeg -c:v h264_ni_quadra_dec-dec 0 -xcoder-params
"cropModeO=manual:crop0=1440,1080,240,0" -i input1080p10bit.264 -c:v rawvideo
output1440x1080-10bit.yuv

NETINT © 2024 Page 124 of 228

" NETINT
Quadra Integration & Programming Guide

9.2 PPU Scale Adaptive

We support three configuration methods for ppu scale adaptation, which can be configured
through parameter " scaleOLongShortAdapt", parameter " enablePpuScaleAdapt", and
“scale0=0xheight or Widthx0”. We do not recommend using the parameter
"enablePpuScaleAdapt" because after enabling this parameter, it defaults to rounding down 2.
And after enabling this parameter, it will synchronously apply to ppu0, ppul, ppu2. The other
two configuration methods are rounded up by 2 by default, and ppu0 ppul ppu2 can be
configured separately through scaleOLongShortAdapt scalelLongShortAdapt and
scale2LongShortAdapt (scale0O=0xheight, scale1=0xheight, scale2=0xheight).

This will be introduced with parameter “scaleOLongShortAdapt”. It must be used with
scaleO=widthxheight. It can set 3 values, 0, 1, 2. The default value is 0, 1 is to enable long edge
resolution adaptation, while short edge resolution remains unchanged. 2 is to enable short edge
resolution adaptation while keeping long edge resolution unchanged. We will use in_w, in_h
represents the input stream resolution, out_w, out_h represents the final output stream
resolution, scale0_w. scale0_h represents the expected ppu output resolution set.

With “scaleOLongShortAdapt = 0,scaleO=scale0_w X scale0_h”, If scale0_w is larger than in_w or
scale0_h s larger than in_h, then the output resolution is consistent with the input resolution,
(out_w =in_w, out_h =in_h). otherwise the output resolution is the set resolution, (out_w =
scale0_w, out_h =scale0_h). And if “scale0=0x0", the output resolution is consistent with the
input resolution, If “scale0=0xheight”, it is same as “scaleOLongShortAdapt=1", If
“scale0=widthx0”,it is same as “scaleOLongShortAdapt=2".

For example, we set scaleOLongShortAdapt = 1, if the initial input stream is 1920x1080, scale0 is
set to 960x360. At this point, the long side is 1920 and the short side is 1080, so the output short
side remains unchanged and is 360. The long side is calculated to be 1920x360/1080=640, and
the output resolution is 640x360. Then, when the input stream is changed to 1080x1920, the
output stream will be changed to 360x640. If the subsequent input stream is changed to
1080x720, the output stream will be changed to 540x360. Therefore, when we set long edge
adaptation, we set the output resolution to 960x360, The resolution change of the input stream
is 1920x1080->1080x1920->1080x720, and the output resolution is 640x360->360x640-
>540x360. If short edge adaptation is enabled and other conditions remain unchanged, the
output resolution is 960x540->540x960->960x640.

NETINT © 2024 Page 125 of 228

" NETINT
Quadra Integration & Programming Guide

Note- If scaleOLongShortAdapt = 1 or 2, when scale0=0x0, Oxh, or wx0, it will return error code
from libxocoder. And if “scaleOLongShortAdapt = 1 or 2” or “scale0=0xh, scale0=wx0", we will
check the area of input stream and scale stream. For example, the input stream is 1280x720, and
scale0=3000x360, due to 3000x360 is larger than 1280x720, so the output stream is 1280x720.

We will also check the output width and height is larger than the input stream. For example, the
input stream is 640x360, scale0=0x720, in this case, the resolution of the short side remains
unchanged, and when calculating the resolution of the long side, the calculated resolution is
1280x720. Because we do not support expansion on either side, the final resolution is 640x360.

ffmpeg -c:v h264_ni_quadra_dec -xcoder-params out=hw:scale0=720x1280:scaleOLongShortAdapt=0
-linput.h264 -c:v h265_ni_quadra_enc output.h265

NETINT © 2024 Page 126 of 228

" NETINT
Quadra Integration & Programming Guide

10Filters

Libxcoder supports hardware filters in Quadra that make use of the hardware scaling, cropping,
padding, and overlay features of the 2D engine, provide access to the multiple outputs of the
decoder and to support transferring software AVFrames to the hardware so they can be used as
hardware AVFrames.

The table below lists the NETINT hardware filters, all of which are implemented using features of
the 2D and Al engines (except for ni_quadra_split and ni_quadra_hwupload).

Ni_quadra_split is used to provide access to the 2nd and 3rd decoder output. The FFmpeg split
function can also be used on hardware AVFrames but will only split the first output.

Ni_quadra_hwupload transfers the YUV data from a software frame to the hardware and
generates a hardware frame as an output.

NETINT © 2024 Page 127 of 228

Quadra Integration & Programming Guide

" NETINT

See also APPS548 Codensity Quadra Software and Hardware Frames (YUVbypass) Application
Note to learn more about hardware frames.

Quadra libxcoder filters

Filter name Description Resources Used
ni_quadra_scale NETINT Scaling Filter 2D Engine
ni_quadra_overlay NETINT Overlay filter 2D Engine
ni_quadra_split NETINT Split filter (gives access to 2nd and 3rd

decoder outputs)
ni_quadra_crop NETINT Crop filter 2D Engine
ni_quadra_pad NETINT Pad filter 2D Engine

ni_quadra_hwupload

NETINT Hardware Upload Filter (transfers a software
YUV or RGBA frame to the hardware for encode or
filtering)

ni_quadra_roi

NETINT ROI filter

Al Engine, 2D Engine

ni_quadra_bg

NETINT background removal filter

Al Engine, 2D Engine

ni_quadra_xstack NETINT Stacking filter 2D Engine
ni_quadra_rotate NETINT Rotate Filter 2D Engine
ni_quadra_drawbox NETINT Draw box Filter 2D Engine
ni_quadra_drawtext NETINT Draw text Filter 2D Engine
ni_quadra_delogo NETINT Delogo Filter 2D Engine
ni_quadra_merge NETINT Merge Filter 2D Engine

The NetInt 2D Engine filters are hardware-assisted filters to provide the application the ability to
scale, crop, pad, overlay, stack, rotate, and draw video inside the hardware without the need to
transfer YUV data to and from the host. For example if we decode video in 16:9 aspect ratio,
scale, crop, then re-encode to video with a 4:3 aspect ratio, we can do all of this in the hardware
without needing to transfer any YUV using hardware frames and the Netint filters. If we were to
use FFmpeg’s native scale and crop filters we would need to transfer the decoded YUV to the

host to scale and crop and then transfer back to the hardware to encode.

NETINT © 2024

Page 128 of 228

" NETINT
Quadra Integration & Programming Guide

The ni_quadra_scale, ni_quadra_overlay, ni_quadra_crop, ni_quadra_pad, ni_quadra_xstack,
ni_quadra_rotate, ni_quadra_drawtext, ni_quadra_drawbox, ni_quadra_delogo and
ni_quadra_merge filters only work with hardware frames. To use these NETINT filters with
software frames, you must first use ni_quadra_hwupload to upload the software frame to the
Quadra device to create a hardware frame. Similarly, FFmpeg has a native hwdownload filter to
retrieve the YUV data from the hardware, converting a hardware frame to a software frame.

The ni_quadra_split filter may be used on software frames though the behavior will default to
what the FFmpeg native split filter will do. The ni_quadra_roi filter works with hardware and
software frames.

The 2D Engine supports raster YUV input and output as well as RGBA format for overlay. It
requires input pictures to have even width and height for RGBA. For YUV the stride must be a
multiple of 128 bytes for both the luma and chroma planes. The minimum picture height is 32
pixels and the minimum picture width is 32 pixels.

The maximum resolution for ARGB, ABGR, RGBA, BGRA is 7040x7040. The maximum resolution
for other pixel formats is 8192x8192.

For ni_quadra_overlay, ni_quadra_crop, ni_quadra_pad, ni_quadra_drawtext,
ni_quadra_drawbox, ni_quadra_delogo and ni_quadra_merge, the output format is the same as
input format. It depends on the input formats supported by ni_quadra_hwupload (see section
10.1.6).

NETINT © 2024 Page 129 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.1 ni_quadra_scale

The ni_quadra_scale filter provides up or down scaling to any picture size. It works just like the
FFmpeg software scale filter but uses the hardware to do the scaling. Quadra does not support
the FFmpeg scale interlacing mode parameter or the libswscale flags and parameters. Scaling is
supported for yuv420p, yuv420p10le, nv12, p010le, rgba, argb, abgr, bgra, bgr0, nv16, yuyv422

and uyvy422. The bgrp format cannot be scaled but can be used as an output in the format
parameter.

ni_quadra_scale only supports hardware AVFrames as input and output. To scale a software
frame, use ni_quadra_hwupload to upload the frame to the Quadra device. If the hardware
frame is on the same device as the scaler, it can be accessed directly.

NETINT © 2024 Page 130 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

Below are the parameters for the ni_quadra_scale filter:

width, w
height, h

Set the output video dimension.

If the width or w value is 0, the input width is used for the output. If the height or h
value is 0, the input height is used for the output.

If one and only one of the values is -n with n >= 1, the ni_quadra_scale filter will use a
value that maintains the aspect ratio of the input image, calculated from the other
specified dimension. After that it will, however, make sure that the calculated
dimension is divisible by n and adjust the value if necessary.

If both values are -n with n >= 1, the behavior will be identical to both values being set
to 0 as previously detailed.

size, s

Set the video size using an FFmpeg abbreviation.

Supported Values:
ntsc (720x480), pal (720x576), gntsc (352x240), gpal (352x288), sntsc
(640x480), spal (768x576), film (352x240), ntsc-film (352x240), sqcif
(128x96), qcif (176x144), cif (352x288), 4cif (704x576), 16cif
(1408x1152), qqvga (160x120), qvga (320x240), vga (640x480), svga
(800x600), xga (1024x768), uxga (1600x1200), gxga (2048x1536), sxga
(1280x1024), gsxga (2560%x2048), hsxga (5120x4096), wvga (852x480),
wxga (1366x768), wsxga (1600x1024), wuxga (1920x1200), woxga
(2560x1600), wagsxga (3200x2048), wquxga (3840x2400), whsxga
(6400x4096), whuxga (7680x4800), cga (320x200), ega (640x350), hd480
(852x480), hd720 (1280x720), hd1080 (1920x1080), 2k (2048x1080),
2kflat (1998x1080), 2kscope (2048x858), 4k (4096x2160), 4kflat
(3996x2160), 4kscope (4096x1716), nhd (640x360), hqvga (240x160),
wqvga (400x240), fwqvga (432x240), hvga (480x320), ghd (960x540),
2kdci (2048x1080), 4kdci (4096x2160), uhd2160 (3840x2160), uhd4320
(7680x4320)

Default: none

NETINT © 2024 Page 131 of 228

" NETINT
Quadra Integration & Programming Guide

force_original_aspect_ratio

Enable decreasing or increasing output video width or height if necessary to
keep the original aspect ratio. One useful instance of this option is that when
users know a specific device’s maximum allowed resolution, they can use this to
limit the output video to that, while retaining the aspect ratio. For example,
device A allows 1280x720 playback, and your video is 1920x800. Using this
option (set it to decrease) and specifying 1280x720 to the command line makes
the output 1280x534. Note that this is a different thing than specifying -1 for w
or h, you still need to specify the output resolution for this option to work.

Supported Values:
decrease
increase

Default: disable

NETINT © 2024 Page 132 of 228

" NETINT
Quadra Integration & Programming Guide

force_divisible_by

Ensures that the output resolution is divisible by the given integer when used
with force_original_aspect_ratio. This option respects the value set for
force_original_aspect_ratio and will increase or decrease the resolution
accordingly.

This option is useful if you want to have a video fit within a defined resolution
using force_original_aspect_ratio but have encoder restrictions when it comes
to width or height.

Supported Values: Integer in the range 1 to 256
Default: 1

format

Changes the output pixel format.

Supported Values:
auto: use same pixel format as input
yuv420p: change output format to 8-bit yuv420 planar
nv12 — change output format to 8-bit yuv420 semi-planar
yuv420p10le: change output format to 10-bit yuv420 planar
p010le: change output format to 10-bit yuv420 semi-planar
rgba — change output format to 32-bit rgba
argb — change output format to 32-bit argb
abgr — change output format to 32-bit abgr
bgra — change output format to 32-bit bgra
bgr0 — change output format to 32-bit bgr0
bgrp — change output format to 24-bit bgrp
nv16 — change output format to 64-bit YUV422 semi-planar
yuyv422 — change output format to 8-bit YUV422
uyvy422 — change output format to 8-bit YUV422

Default: auto

keep_alive_timeout

Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out, terminates the
session instance in the XCoder firmware.

Supported Values: Integer in the range 1 to 100
Default: 3

NETINT © 2024 Page 133 of 228

" NETINT
Quadra Integration & Programming Guide

filterblit

Specifies the scaling algorithm. The default is a simple blit function that uses an
algorithm similar to the nearest neighbor algorithm. When the filterblit
parameter is set to 1 then the filterblit algorithm will be used for scaling. The
filterblit function uses a FIR filter algorithm that is similar in quality to the
bicubic algorithm. When the filterblit parameter is set to 2, a bicubic algorithm is
used.

Supported Values: Integer in the range 0 to 2
Default: 0

in_color_matrix

Set the input YCbCr color space type. Only applicable to YUV formats. Used
when converting YCbCr to RGB.

Supported Values: bt709 and bt2020
Default: bt709

out_color_matrix

Set the output YCbCr color space type. Only applicable to YUV formats. Used
when converting RGB to YCbCr.

Supported Values: bt709 and bt2020
Default: bt709

is_p2p
Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the
output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p.

Supported Values: Bool 0 and 1.
Default: 0

NETINT © 2024 Page 134 of 228

" NETINT
Quadra Integration & Programming Guide

The following example uses the NETINT ni_quadra_scale filter with all processing on the same
device with no YUV transfers. The decoder is on device 0 and outputs hardware frames. The
ni_quadra_scale filter automatically co-locates with the decoder and outputs hardware frames
on the same device. Since the encoder device ID is -1, the encoder will be co-located with its
scaled hardware frame input. If the encoder were to be placed on a different device, then the
scaled frame would be automatically transferred to the host and then to the encoder device
which is sub-optimal.

ffmpeg -c:v h264_ni_quadra_dec -dec 0 —xcoder-params "out=hw" -i input1080p.264 -vf
ni_quadra_scale=1280:720 -c:v h265_ni_quadra_enc -enc -1 -xcoder-params
"RcEnable=1:bitrate=1000000" output720p.265

NETINT © 2024 Page 135 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.2 ni_quadra_overlay

The ni_quadra_overlay filter mixes two streams together with or without alpha blending, the
main image and the overlay image. Overlays are typically used to overlay broadcast streams with
logos or text. These typically use alpha blending, where the logo background would be
transparent, or partially transparent to blend with the main image. Overlays can also be used for
picture in picture which will typically not use alpha blending. An overlay can be a moving picture
or a single still frame. Alpha defines how the weighting should be given to the color components
during the blending process. The ni_quadra_overlay filter is supported for yuv420p,
yuv420p10le, nv12, p010le, rgba, argb, abgr, bgra, bgr0, nv16, yuyv422 and uyvy422.

Prerequisites

The ni_quadra_overlay filter is unique in that it requires two input frames to produce an output.
Both inputs must be hardware frames on the same device. This imposes the following rules:

1. If sources are from two decoding sessions:
Decoder must have explicit decode ID ie. (-c:v h264_ni_quadra_dec -dec 3 -xcoder-
params 'out=hw' -i input1.h264 -c:v vp9_ni_quadra_dec -dec 3 -xcoder-params 'out=hw'
-i input2.ivf ...)

2. |If sources are from upload and decoding session:
Decoder and upload must have same ID ie. (-c:v h264_ni_quadra_dec -dec 1 -xcoder-
params 'out=hw' -i input1.h264 -c:v h264_ni_quadra_dec -dec -1 -xcoder-params
'out=sw' -i input2.h264 -filter_complex '[1:v]ni_quadra_hwupload=1[in2];
[0:v][in2]ni_quadra_overlay=0:0[out];...)

3. Multiple upload instances with ni_quadra_hwupload will also require the upload
parameter to have matching device ID.

NETINT © 2024 Page 136 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The ni_quadra_overlay parameters are mostly identical to the FFmpeg overlay but it uses the
hardware to do the overlay. The input and output from the ni_quadra_overlay filter is a NETINT
hardware AVFrame and the underlying pixel format of the output will be the same as the main

image. There is a special case where the output is changed to nv12 if the main is compressed 8-bit tiled
4x4 and overlay is rgb.

Note that the eof action parameter defaults to repeat, this permits a single image to be overlaid
for the entire duration of the main video stream.

Below are the parameters for the ni_quadra_overlay filter:

Xy

Set the expression for the x and y coordinates of the overlaid video on the main
video. In case the expression is invalid, it is set to a big value (meaning that the
overlay will not be displayed within the output visible area). The x and y
expressions can contain the following parameters, main_w, main_h, width and
height of main image, overlay_w, overlay_h, width and height of overlay, hsub,
vsub, horiz and vert chroma subsample values of the output, t (timestamp
expressed in seconds).

Supported Values: Integer in the range 0 to 8192
Default: O for both expressions

eof_action

NETINT © 2024

The action to take when EOF is encountered on the secondary input. Repeat,
repeats the last frame, endall ends both streams, pass continues with just the
main stream.

Supported Values:
endall
pass
repeat

Default: repeat

Page 137 of 228

" NETINT
Quadra Integration & Programming Guide

shortest

Force the output to terminate when the shortest input terminates.

Supported Values:
0: Disable
1: Enable

Default: O: Disable

repeatlast

Force the filter to extend the last frame of secondary streams until the end of
the primary stream.

Supported Values:
0: Disable
1: Enable

Default: 1: Disable

alpha
Set format of alpha of the overlaid video, it can be straight or premultiplied. If
the overlaid video is YUV, the overlay will completely overwrite the background
because there is no alpha channel. If the overlaid video is an RGBA icon, then
the overlay will blend with the background as per the alpha value of each pixel.
Supported Values:
straight
premultiplied
Default: straight
inplace

Perform an in-place overlay. The ni_quadra_overlay filter normally makes a copy of the
background frame and applies the overlay to the copied frame. This copy operation can
have a performance penalty on the Quadra device. To improve performance, the inplace
parameter will apply the overlay immediately to the background frame. Although this
improves performance, this restricts how you can use FFmpeg. You must not use the
split or ni_quadra_split filter before the ni_quadra_overlay filter. Doing so may cause the
video of other entities using the split to include the overlay. Also, if the overlay image is
too large, performance can actually decrease.

NETINT © 2024 Page 138 of 228

" NETINT
Quadra Integration & Programming Guide

is_p2p

Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the
output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p. This option won’t
work when inplace is set to 1.

Supported Values: Bool 0 and 1.
Default: 0

keep_alive_timeout

Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out, terminates the
session instance in the XCoder firmware.

Supported Values: Integer in the range 1 to 100
Default: 3

The following is a Quadra overlay example. The decoder on device 0 decodes the background
frames from the mp4 file. The icon overlay is a PNG file that is converted to RGBA, scaled, then
transferred to the same hardware device using ni_quadra_hwupload. This icon will be overlaid
on every frame because the default eof_action is repeat. The ni_quadra_overlay output is sent
to the encoder which is also on device 0.

ffmpeg -dec 0 -c:v h264_ni_quadra_dec -xcoder-params "out=hw" -i WorldFootball-2min.mp4
-i cbctrans.png -filter_complex
"[1:v]format=rgba,ni_quadra_hwupload=0[a];[0:v][a]ni_quadra_overlay=main_w-overlay_w-
25:main_h-overlay_h-25[b]" -c:a copy -map "[b]" -enc 0 -c:v h265_ni_quadra_enc -xcoder-
params "RcEnable=1:bitrate=2000000" -map "0:a" WorldFootball-overlay.mp4

NETINT © 2024

Page 139 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.3 ni_quadra_split

The ni_quadra_split filter provides the same functionality as the FFmpeg software split filter but
it also provides a way to access the 2" and 3™ decoder outputs. A Netint hardware frame can
contain up to 3 outputs. The first one is directly accessible through the hardware frame, the
other 2 can only be accessed through ni_quadra_split.

Parameters

The following are the parameters for the ni_quadra_split filter. OutputO corresponds to the
default decoder output frame while outputl and output2 are the extra outputs on multi-output
decoding. The integer value provided to each parameter corresponds to the number of copies of
the specified output to produce. Note that the ni_quadra_split filter does not actually do any
processing on the hardware, it simply adds references to output buffers and gives access to the
multiple outputs of the decoder.

output0

Specifies number of copies of output 0 to output as HWAVFrame.

Supported Values: Integers from 0 to 128
Default: 2

outputl

Specifies number of copies of output 1 to output as HWAVFrame.

Supported Values: Integers from 0 to 128
Default: 0

output2

Specifies number of copies of output 2 to output as HWAVFrame.

Supported Values: Integers from 0 to 128
Default: 0

NETINT © 2024 Page 140 of 228

" NETINT
Quadra Integration & Programming Guide

The following is an example using ni_quadra_split and ni_quadra_scale on Quadra. The decoder
in this case has output 1 enabled (output 0 is always enabled). Ni_quadra_split is used to select
3 copies of output 1 and create new hardware AVFrames that can be used to access this output
and feed them to each output. The ni_quadra_scale filters are collocated on the same hardware
as the decoder as are the encoders (-enc -1) to avoid all YUV transfers.

ffmpeg -c:v h264_ni_quadra_dec -dec 0 -xcoder-params "out=hw:enableOQut1=1" -i
demo_1920x1080p30.h264 -filter_complex
'[0:v]ni_quadra_split=0:3:0[out1][in2][in3];[in2]ni_quadra_scale=1280:720[out2];[in3]ni_quadra_scal
e=854:480[out3]' -map '[outl]' -c:v h265_ni_quadra_enc -enc -1 -xcoder-params
"RcEnable=1:vbvBufferSize=3000:bitrate=10000000" 1080p.265 -map '[out2]' -c:v
h265_ni_quadra_enc -enc -1 -xcoder-params "RcEnable=1:vbvBufferSize=3000:bitrate=4000000"
720p.265 -map '[out3]' -c:v h265_ni_quadra_enc -enc -1 -xcoder-params
"RcEnable=1:vbvBufferSize=3000:bitrate=1000000" 480p.265

This is the same example using multiple decoder outputs with scaling in the decoder post
processor rather than the 2D engine. Note that the decoder scales can only scale down. Using
the scalers in the decoder output is an alternative to the 2D Engine which is a shared resource
and could affect performance if more heavily used. ni_quadra_split is used to select the 1st, 2nd,
and 3rd decoder output for mapping to the 3 encoders. The encoders are located on the same
device as the decoder (-enc -1) to avoid all YUV transfers.

ffmpeg -c:v h264 _ni_quadra_dec-dec 0 -xcoder-params
"out=hw:enableOutl=1:scale1=1280x720:enableOut2=1:scale2=854x480" -i
demo_1920x1080p30.h264 -filter_complex '[0:v]ni_quadra_split=1:1:1[out1][out2][out3]' -map
'[outl]' -c:v h265_ni_quadra_enc -enc -1 -xcoder-params
"RcEnable=1:vbvBufferSize=3000:bitrate=10000000" 1080p.265 -map '[out2]’ -c:v
h265_ni_quadra_enc -enc -1 -xcoder-params "RcEnable=1:vbvBufferSize=3000:bitrate=4000000"
720p.265 -map '[out3]' -c:v h265_ni_quadra_enc -enc -1 -xcoder-params
"RcEnable=1:vbvBufferSize=3000:bitrate=1000000" 480p.265

NETINT © 2024 Page 141 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.4 ni_quadra_crop

The ni_quadra_crop filter provides cropping similar to the FFmpeg soft crop filter but uses the
hardware to do the cropping. There are several applications for cropping. One is to handle the
cropping specified in the bitstream (i.e. to remove padding added for hardware or codec
alignment). The other is to apply cropping specified by the user for applications such as changing
the aspect ratio of a picture, i.e. cropping a 16:9 widescreen image to 4:3.

Cropping information in a bitstream is typically added by the encoder, if it needs pads the input
picture size to meet the height and width alignment requirements of the codec, for instance
H.264 encodes in 16x16 pixel macroblocks.

Another application for cropping is when you need to change the aspect ratio of a video for
example when changing a 16:9 widescreen image to the older 4:3 format, the right and left
edges of the picture need to be cropped.

Another method of changing aspect ratio is to use scaling and add letterboxing to the top and
bottom of the image. Letterboxing requires the pad filter which is described next. Sometimes a
combination of both is used. The ni_quadra_crop filter is supported for yuv420p, yuv420p10le,
nv12, p010le, rgba, argb, abgr, bgra, bgr0, nv16, yuyv422 and uyvy422.

NETINT © 2024 Page 142 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The following are the ni_quadra_crop parameters:

w, out_w

The width of the output video. This expression is evaluated only once during the
filter configuration, or when the ‘w’ or ‘out_w’ command is sent.

h, out_h

The height of the output video. This expression is evaluated only once during
the filter configuration, or when the ‘h’ or ‘out_h’ command is sent.

Supported Values: Integers from 2 to 8192
Default: ih (input height)

The horizontal position, in the input video, of the left edge of the output video.
This expression is evaluated per-frame.

Supported Values: Integers from 2 to 8192
Default: (in_w-out_w)/2

The vertical position, in the input video, of the top edge of the output video.
This expression is evaluated per-frame.

Supported Values: Integers from 2 to 8192
Default: (in_h-out_h)/2

keep_aspect

NETINT © 2024

Force the output display aspect ratio to be the same of the input, by changing
the output sample aspect ratio. It defaults to 0.

Supported Values:
0: change aspect ratio
1: keep aspect ratio
Default: 0: change aspect ratio

Page 143 of 228

" NETINT
Quadra Integration & Programming Guide

is_p2p

Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the
output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p.

Supported Values: Bool 0 and 1.
Default: 0

keep_alive_timeout

Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out terminates the
session instance.

Supported Values: Integer in the range 1 to 100
Default: 3

The out_w, out_h, x, y parameters are expressions containing the following constants:

X,y

The computed values for x and y. They are evaluated for each new frame.

in_w, in_h, iw, ih

The input width and height

out_w, out_hw, ow, oh

The output (cropped) width and height.

a
Same as iw/ih

sar
input sample aspect ratio

dar
input display aspect ratio, it is the same as (iw / ih) * sar

hsub, vsub
horizontal and vertical chroma subsample values. For example for the pixel
format "yuv422p" hsub is 2 and vsub is 1.

NETINT © 2024

Page 144 of 228

" NETINT
Quadra Integration & Programming Guide

The following shows an example using ni_quadra_crop. The input is an 852x480 yuv420p frame
that is uploaded as a hardware frame using ni_quadra_hwupload and then cropped to 640x480
starting at (0,0) and then encoded to H.265.

ffmpeg -hide_banner -f rawvideo -pix_fmt yuv420p -s:v 852x480 -r 60 -i input852x480.yuv -vf
"format=yuv420p,ni_quadra_hwupload=0,ni_quadra_crop=640:480:0:0" -enc -1 -c:v
h265_ni_quadra_enc -xcoder-params "RcEnable=1:bitrate=10000000" output640x480.265

10.1.5 ni_quadra_pad

The ni_quadra_pad filter works like the FFmpeg software pad filter but uses the hardware to do
the padding.

There are a couple of applications for padding. One is to pad an image so that the width and
height are aligned as required by an encoder. This is done automatically by the encoder. The
other is to change the aspect ratio of an image by letterboxing, i.e. adding black bars to the top
and bottom or left and right of an image. The latter application is what the padding filter will
normally be used for.

As with scaling, the 2D Engine can pad an image that already contains padding. The
ni_quadra_pad filter is supported for yuv420p, yuv420p10le, nv12, rgba, argb, abgr, bgra, bgrO,
nv16. The pixel formats yuyv422 and uyvy422 are not supported inputs like the FFmpeg pad
filter.

NETINT © 2024 Page 145 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The following are the ni_quadra_pad parameters:

width, w
height, h

color

Specify an expression for the size of the output image with the paddings added.
If the value for width or height is 0, the corresponding input size is used for the
output.

Specifies the offsets to place the input image within the padded area, with
respect to the top/left border of the output image. The x expression can
reference the value set by the y expression, and vice versa. If x or y evaluate to a
negative number, they’ll be changed so the input image is centered on the
padded area.

Supported Values: -8192 to 8192
Default: 0

Specify the color of the padded area. It can be a color name or a hex value. For
example, black is 0x000000. For the complete syntax of this option, check the
FFmpeg help: https://ffmpeg.org/ffmpeg-utils.html#color-syntax

Default: 0

aspect

Pad to aspect ratio instead of a resolution.

is_p2p

NETINT © 2024

Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the
output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p.

Supported Values: Bool 0 and 1.
Default: 0

Page 146 of 228

https://ffmpeg.org/ffmpeg-utils.html#color-syntax

" NETINT
Quadra Integration & Programming Guide

keep_alive_timeout

Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out, terminates the
session instance in the XCoder firmware.

Supported Values: Integer in the range 1 to 100
Default: 3

The value for the width, height, x, and y options are expressions containing the following
constants:

in_w, in_h, iw, ih
The input video width and height.
out_w, out_hw, ow, oh

The output video width and height.

Xy
The x and y offsets as specified by the x and y expressions, or NAN if not yet
specified.
a
same as iw / ih
sar
input sample aspect ratio
dar
input display aspect ratio, it is the same as (iw / ih) * sar
hsub, vsub

The horizontal and vertical chroma subsample values. For example for the pixel
format "yuv422p" hsub is 2 and vsub is 1.

NETINT © 2024 Page 147 of 228

" NETINT
Quadra Integration & Programming Guide

The following shows an example using ni_quadra_pad to change the aspect ratio from ntsc 480p
(640x480) to 16:9 480p (852x480). The raw YUV420 planar file input640x480 is uploaded to
device 0 as a hardware frame using the ni_quadra_hwupload filter. The ni_quadra_pad filter
then pads to 852x480 and puts the original frame at position x=106, y=0. The padding is set to
black. The encoder is also collocated on device 0 using -enc -1.

ffmpeg -y -hide_banner -f rawvideo -pix_fmt yuv420p -s:v 640x480 -r 60 -i input640x480.yuv -vf
"format=yuv420p,ni_quadra_hwupload=0,ni_quadra_pad=852:480:106:0:0x000000" -enc -1 -c:v
h265 ni_quadra_enc -xcoder-params "RcEnable=1:bitrate=10000000" output852x480.265

NETINT © 2024 Page 148 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.6 ni_quadra_hwupload

The FFmpeg hwupload filter transfers YUV image data from a software frame to the hardware
and outputs a hardware frame. The ni_quadra_hwupload filter does the same thing but adds a
device ID parameter to specify which card the image data should be transferred to. Using
ni_quadra_hwupload is required if we need to process a software frame with an Netint filter
that only supports hardware frames. It is also useful if we need to feed the same software frame
to multiple inputs on the same card (say multiple encoders and the 2D Engine) as it saves
additional YUV transfers.

12 pixel formats are supported for the ni_quadra_hwupload filter: yuv420p, yuv420p10le, nv12,
p010le, rgba, argb, abgr, bgra, bgr0, nv16, yuyv422 and uyvy422.

Parameters

The following are the ni_quadra_hwupload parameters:

device

Device ID of the hardware to upload to. A value of —1 or no entry means to
upload to the device with the fewest upload instances. If there are not enough
resources to open the upload instance, the upload will return with failure.

Supported Values: -1, 0-255
Default: Resource monitor assigns the device
devname
Device name of the hardware to upload to. The device name should be like
/dev/nvmeXnY as ni_rsrc_mon shows.
keep_alive_timeout

Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out, terminates the
session instance by XCoder firmware.

Supported Values: Integer in the range 1 to 100
Default: 3

NETINT © 2024 Page 149 of 228

" NETINT
Quadra Integration & Programming Guide

The following example shows ni_quadra_hwupload being used with ni_quadra_scale to avoid
the multiple YUV transfers. The input MPEG2 bitstream is decoded using the FFmpeg soft
decoder which outputs software frames. ni_quadra_hwupload is then used to upload the YUV
software frame to device 0 returning a hardware frame. Then the FFmpeg split is used to split
the hardware frame into 3. The first split output [outl] is fed directly to a Netint h.265 encoder
collocated with the hardware frame (-enc -1). The second split output [in2] is scaled to 720p on
[out2] using ni_quadra_scale and then encoded on a second collocated encoder. The third split
output [in3] is scaled to 540p using ni_quadra_scale and fed to a third collocated encoder. All
decoding, scaling, and encoding is done on a single device with

ffmpeg -y -i input1080p-mpeg?2.ts -filter_complex
'[0:v]ni_quadra_hwupload=device=0,split=3[out1][in2][in3];

[in2]ni_quadra_scale=1280:720[out2];[in3]ni_quadra_scale=854:480[out3]' -map '[outl]'

-c:v h265_ni_quadra_enc -enc -1 -xcoder-params
"RcEnable=1:vbvBufferSize=3000:bitrate=10000000"

1080p.265 -map '[out2]' -c:v h265_ni_quadra_enc -enc -1 -xcoder-params
"RcEnable=1:vbvBufferSize=3000:bitrate=4000000" 720p.265

-map '[out3]' -c:v h265_ni_quadra_enc -enc -1 -xcoder-params

"RcEnable=1:vbvBufferSize=3000:bitrate=1000000 " 480p.265

ffmpeg —y —i input.mp4 -vf
ni_quadra_hwupload=devname=/nvmeOn1,ni_quadra_scale=1280:720 -c:v
h264 ni_quadra_enc output.mp4

NETINT © 2024 Page 150 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.7 ni_quadra_roi

The ni_quadra_roi filter analyzes input video to detect faces and generate Region of Interest
(ROI) data to improve the encoding quality of the faces. It does this by inferencing the input
frames using the Al Engine, identifies the objects’ coordinates and classes in the images and
creates ROl side data to be used by the encoder.

The ni_quadra_roi filter loads a yolov4 object detection model down to the Al Engine device
specified. It also defines its input and output dimensions. For yolov4 models, the input requires a
tensor with shape 416x416 and pixel format BGRPlanar. This means that the filter needs to scale
these input images and do the format conversion. The filter supports both hardware frames and
software frames. For software frames, only YUV420P is supported for now and the soft FFmpeg
scaler is used to do the scaling. Since FFmpeg doesn’t support BGRPlanar, the filter first scales
the input image to a 416x416 RGB24 AVFrame, then rearranges the frame to a compact
RGRPlanar tensor, and transfers the tensor down to Al module to do inference. For hardware
frames, the 2D Engine converts the RGB24 to BGRPlanar and then does the scaling. The scaled
hardware frames are then passed to the Al module to do inferences.

Before the inference begins, an output buffer will be preset to the model. when the inference
completes, the output tensor will be saved in the output buffer. The filter then fetches the
output tensor from firmware. It runs post processing with the output tensor to compute the
objects’ boxes and class labels in the images. if there are any objects, their boxes will be
converted to the four coordinates relative to the up left zero point of the images. Each objects’
coordinates will be put into the ROI side data including a preset QP offset. All the ROI side data in
an image will be appended to and passed down to the encoder along with the images.

NETINT © 2024 Page 151 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The following are the ni_quadra_roi parameters:

nb
Specifies the Al module (network_binary_yolov4_head.nb) network binary file
path including the file name. This field is required for the filter to work.
Supported Values: String
Default: Null

gpoffset
Specifies the ROI QP offset so that encoder can set the specific QP in these
regions based on the QP offset. A negative QP offset will increase the quality in
the ROI regions detected by the filter. A positive QP offset will decrease the
quality of the ROI regions. A QP offset of 0 means no change in quality. The QP
offset range of -1 to +1 translates to an actual QP offset of -25 to +25 in the
encoder.
Not Applicable: Not applicable for FFmpeg 4.2.0 or before
Supported Values: -1.0to 1.0
Default: 0.0

devid
Specifies the Device ID of Quadra hardware to use when software frames are
used as an input. When a hardware frame is used the filter will be collocated to
the same device as the frame.
Supported Values: 0 to max device ID
Default: 0

obj_thresh

NETINT © 2024

Specifies the yolov4 post processing object threshold. Each region would have
its score. When it reaches the obj_thresh, it will be taken as an object. The
higher the threshold means the harder to be taken as an object.

Supported Values: 0 to 1.0

Default: 0.25

Page 152 of 228

" NETINT
Quadra Integration & Programming Guide

nms_thresh

Specifies the yolov4 post processing NMS 10U threshold. The gold is to select
the bounding boxes with the highest detection probability and eliminate all the
bounding boxes whose intersection over union (IOU) value is higher than given
IOU threshold.

Supported Values: floating point value

Default: 0.45

keep_alive_timeout

Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out, terminates the
session instance in the XCoder firmware.

Supported Values: Integer in the range 1 to 100
Default: 3

The following example shows the ni_quadra_roi filter using hardware frames:

ffmpeg -y -vsync 0 -dec 0 -c:v h264_ni_quadra_dec -xcoder-params 'out=hw' -i
cr7_1920x1080.h264 —vf'ni_quadra_roi=nb=./network_binary_yolov4_head.nb:qpoffset=-
0.6'-enc 0 -c:v h264_ni_quadra_enc -xcoder-params 'roiEnable=1:RcEnable=1:bitrate=500000"
-an cr7_1080p_roi_b500000.h264

The following example below shows the ni_quadra_roi filter using software frames.

ffmpeg -y -vsync 0 -dec 0 -c:v h264_ni_quadra_dec -i cr7_1920x1080.h264 -vf
'ni_quadra_roi=nb=./network_binary_yolov4_head.nb:qpoffset=-0.6' -enc 0 -c:v
h264 ni_quadra_enc -xcoder-params 'roiEnable=1:RcEnable=1:bitrate=500000' -an
cr7_1080p_roi_b500000.h264

Please note that this filter is available with FFmpeg-n4.2.1 and higher version since the ROl API
was introduced in FFmpeg-n4.2.

NETINT © 2024

Page 153 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.8 ni_quadra_bg

The ni_quadra_bg background removal filter analyses input frames, inferences these images using
the Al module (segm32), segments the foreground and background of the input images, and then
removes the background.

The filter takes a segm_32 object segmentation model as input, down to the Al module specified
by the user. The imported model will be unfolded and initialized in memory. As for the segm32
model, the dimensions of the input and output are as defined. The segm32 model requires a
tensor with shape 256 x 144 (width x height) and a pixel format of BGR Planar. In this case, the
filter needs to scale the input frames and do the format translation to adapt to the different
resolutions. Currently the filter only supports hardware frames. The 2D Engine is used to do the
scaling and format conversion and then the result is passed to the Al module to perform the
inferences.

When the inference completes the output tensor is then retrieved by the filter which then
performs some post-processing to segment the foreground and background. The result of the
post-processing is the alpha data needed to mix the new background which is converted to
RGBA format to be mixed with the original image using the 2D Engine overlay feature.

NETINT © 2024 Page 154 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The following are the ni_quadra_bg parameters:

nb
Specifies the Al module (segm32.nb) network binary file path including the file
name. This field is required for the filter to work.
Supported Values: String
Default: Null
bg_img

Specifies the background image full path, including the file name. This field is
required for the filter to work, and has no default value.

Supported Values: String

Default: Null

use_default_bg

Specifies whether to use the default background image. When the value is set to
0, the background of input video will be replaced by the customized bg_img. If
set to 1, the default background will be used. By default the customized bg_img
is used.

Supported Values: O or 1

Default: 0

skip
Specifies the number of frames to skip between inference. When set to 0, all
frames are inferenced. When set to 1, every 2™ frame is inferenced. When set to
2, every 3™ frame is inferenced.
Supported Values: 0 or higher
Default: 0

is_p2p

NETINT © 2024

Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the
output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p.

Supported Values: Bool 0 and 1.
Default: 0

Page 155 of 228

¢ NETINT
Quadra Integration & Programming Guide

The following example shows using the ni_quadra_bg filter using hardware frames with custom
background image:

ffmpeg -y -loglevel debug -vsync 0 -dec 0 -c:v h264_ni_quadra_dec -xcoder-params 'out=hw' -
i ./bg_1920x1080.h264 -vf
'ni_quadra_bg=nb=./segm32.nb:bg_img=./bg.png:use_default_bg=0'-enc 0 -c:v
h264_ni_quadra_enc ./bg_1920x1080.h264

The following is an example input before and after background replacement:

Before:

After:

NETINT © 2024 Page 156 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.9 ni_quadra_xstack

The ni_quadra_xstack filter mixes up to 50 streams together with or without alpha blending. The
stacking of inputs is typically used to create a grid for broadcast streams used in applications like
Zoom or MS Teams.

Prerequisites

The ni_quadra_xstack filter is unique in that it requires multiple input frames to produce an
output. All inputs must be hardware frames on the same device. This imposes the following
rules:

1. If sources are from several decoding sessions:
Decoder must have explicit decode ID ie. (-c:v h264_ni_quadra_dec -dec 3 -xcoder-
params 'out=hw' -i input1.h264 -c:v vp9_ni_quadra_dec -dec 3 -xcoder-params 'out=hw'
-i input2.ivf ...)

2. |If sources are from upload and decoding sessions:
Decoder and upload must have same ID ie. (-c:v h264_ni_quadra_dec -dec 1 -xcoder-
params 'out=hw' -i input1.h264 -c:v h264_ni_quadra_dec -dec -1 -xcoder-params
'out=sw' -i input2.h264 -filter_complex '[1:v]ni_quadra_hwupload=1[in2];
[0:v][in2]ni_quadra_xstack=0:0[out];...)

3. Multiple upload instances with ni_quadra_hwupload will also require the upload
parameter to have matching device ID.

NETINT © 2024 Page 157 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The ni_quadra_xstack parameters are mostly identical to the FFmpeg xstack but it uses the
hardware to do the stacking. The inputs and output from the ni_quadra_xstack filter is a NETINT
hardware AVFrame and the output frame rate will be the same as the frame rate as the first
input except when explicitly specified by the sync parameter below. All inputs to the
ni_quadra_xstack filters must have the same pixel format. For RGB pixel formats with alpha, the
alpha must be straight alpha and not premultiplied (associated) alpha.

Below are the parameters for the ni_quadra_xstack filter:

inputs

Set the number of inputs that the filter will receive.

Supported Values: Integer in the range 2 to 50
Default: 2

layout

Specifies the layout for the x and y coordinates of the input videos on the output
video. This option requires the desired layout configuration to be explicitly set
by the user. This sets the position of each video input in output. Each input is
separated by a’|’. The first number represents the column, and the second
number represents the row. Numbers start at 0 and are separated bya’ ’
Optionally one can use wX and hX, where X is video input from which to take
width or height. Multiple values can be used when separated by a ’+’. In such
case values are summed together. Odd values are rounded up to the nearest
even integer.

Note that if inputs are of different sizes gaps may appear, as not all of the output
video frame will be filled. Similarly, videos can overlap with each other if their
position doesn’t leave enough space for the full frame of adjoining videos.

Supported Values: Integer in the range 0 to 8192

Default: For 2 inputs, a default layout of 0_0|w0_0 is set. In all other cases, a
layout must be set by the user.

NETINT © 2024 Page 158 of 228

" NETINT
Quadra Integration & Programming Guide

size

Set the expression for the width and height of the input videos on the output
video. If the input video is a different size than the output size specified by this
parameter, then it is scaled to the output size. Each input is separated by a’|’.
The first number represents the width, and the second number represents the
height. Numbers start at 1 and are separated by a’ ". Odd values are rounded
up to the nearest even number.

Supported Values: Integer in the range 1 to 8192
Default: Use input video width and height

shortest

fill

sync

NETINT © 2024

Force the output to terminate when the shortest input terminates.

Supported Values:
0: Disable
1: Enable

Default: O: Disable

Fill the background of the output video with this specified color value
Supported Values:

RGBA in hex or an FFMpeg color name
Default: black

Use the specified input source as the primary source to synchronize all the other
inputs with and generate an output with the same FPS as the specified input.

Supported Values: Integer in the range 0 to 49. However, if the value specified
is greater than or equal to the inputs parameter above, then input 0 will be

used.

Default: 0

Page 159 of 228

" NETINT
Quadra Integration & Programming Guide

is_p2p
Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the

output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p.

Supported Values: Bool 0 and 1.
Default: 0

keep_alive_timeout

Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out, terminates the
session instance in the XCoder firmware.

Supported Values: Integer in the range 1 to 100
Default: 3

Note: When using ni_quadra_xstack in ffmpeg command line, if some of inputs frame rate are
different, need to set —vsync 2 in ffmpeg command line to compatible with different frame rate
outputs. For muxer with this extension they will select video sync as VSYNC_VFR by default

.avi.mkv .webm .flv .ts .m2t .m2ts .mts webp .apng .gif

The following is a Quadra xstack example. The decoder on device 0 decodes the h264 file
Crowdrun_3840x2160p30_300.h264 and outputs hardware frames. The decoder on device 0
decodes the file Dinnerscene_1906x984p60_300.h264 and outputs hardware frames.

The two decoder outputs are inputs to the ni_quadra_xstack filter. The ni_quadra_xstack filter
will re-size the first input to 320x240 and the second input to 320x240, as defined by the size
parameter. After re-sizing both inputs, the ni_quadra_xstack filter will place the first input at
position 0,0 and the second input at position 0,240 as defined by the layout parameter.

Finally, the output of the ni_quadra_stack filter is given to the Netint h264 encoder which
generates the file xstack_02.mkv

ffmpeg -y -loglevel debug -c:v h264_ni_quadra_dec -dec 0 -xcoder-params "out=hw" -i
Crowdrun_3840x2160p30_300.h264 -c:v h264_ni_quadra_dec -dec 0 -xcoder-params
"out=hw" -i Dinnerscene_1906x984p60_300.h264 -filter_complex

NETINT © 2024 Page 160 of 228

" NETINT
Quadra Integration & Programming Guide

"[0:v][1:v]ni_quadra_xstack=inputs=2:layout=0_0|0_h0:size=320_240|320_240[out]" -map
"[out]" -c:v h264_ni_quadra_enc -enc 0 xstack_02.mkv

Please note that this filter is only available with FFmpeg-n4.1.3 and higher version since the
native FFmpeg xstack filter was introduced in FFmpeg-n4.1.

NETINT © 2024 Page 161 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.10 ni_quadra_rotate

The ni_quadra_rotate filter rotates a picture/video. It works just like the FFmpeg software rotate
filter but uses the hardware to do the rotation. Rotation is supported for yuv420p.

ni_quadra_rotate only supports hardware AVFrames as input and output. To rotate a software
frame, use ni_quadra_hwupload to upload the frame to the Quadra device. If the hardware
frame is on the same device as the scaler, it can be accessed directly.

NETINT © 2024 Page 162 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The following are the ni_quadra_rotate parameters:

angle, a

Angle to clockwise rotate the input in radians.
Supported Values: 0, PI/2, PI, 3*P1/2

Default: 0

out_w, ow
Set the output width expression.

Default: “iw”

out_h, oh
Set the output height expression.

Default: “ih”

fillcolor, ¢
Set the color used to fill the output area not covered by the rotated image.

Default: “black”

is_p2p
Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the
output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p.

Supported Values: Bool 0 and 1.
Default: 0

The following example decodes a H.264 input using the h264_ni_quadra_dec and rotates the video by 180
degrees before passing it to h264_ni_quadra_enc for encoding.

ffmpeg -vsync 0 -c:v h264_ni_quadra_dec -xcoder-params 'out=hw' -i input.h264 -vf
ni_quadra_drawbox

'ni_quadra_rotate=PI' -c:v h264_ni_quadra_enc -c:a copy output.h264

NETINT © 2024 Page 163 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.11 ni_quadra_drawbox

The ni_quadra_drawbox filter can draw multiple same coloured boxes on a picture/video. It
works just like the FFmpeg software drawbox filter but uses the hardware to do the drawing.
Quadra does not support the FFmpeg drawbox AVOptions of thickness or replace. It can only
draw with one pixel thickness. Drawbox is supported for rgba, argb, abgr and bgra.

ni_qguadra_drawbox only supports hardware AVFrames as input and output. To draw a software
frame, use ni_quadra_hwupload to upload the frame to the Quadra device. If the hardware
frame is on the same device as the scaler, it can be accessed directly.

Because of HW limitations, there is chromatic aberration when box y position is even value. This
should be avoided when drawing boxes.

Parameters
The following are the ni_quadra_drawbox parameters:

x/y

The expressions which specify the top left corner coordinates of the box. It
defaults to 0.

width, w
height, h

The expressions which specify the width and height of the box; It defaults to 0.
color, ¢

Specify the color of the box to write.

Default: “black”

x1ylwlhl

Those expressions are the same as x y w and h, but for box 1.

x2 y2 w2 h2

Those expressions are the same as x y w and h, but for box 2.

x3y3w3h3

Those expressions are the same as x y w and h, but for box 3.

NETINT © 2024 Page 164 of 228

" NETINT
Quadra Integration & Programming Guide

x4 y4 w4 h4

Those expressions are the same as x y w and h, but for box 4.
is_p2p

Specifies if output buffer of the filter is p2p buffer. When is_p2p is set to 1, the
output buffer of the filter is set as p2p buffer and can be read out by p2p read.
Else the output buffer is normal and cannot perform p2p.

Supported Values: Bool 0 and 1.
Default: 0

The following example shows how to use drawbox. The decoder decodes a H.264 input using the
h264 ni_quadra_dec, ni_quadra_scale converts yuv420p to rgba, ni_quadra_drawbox draws
a red box at x=100, y=100, w=1720, h=880 and ni_quadra_scale converts rgba to yuv420p
before passing it to h264_ni_quadra_enc for encoding.

ffmpeg -vsync 0 -c:v h264_ni_quadra_dec -xcoder-params 'out=hw' -i input.h264 -vf '
ni_quadra_scale=iw:ih:format=rgba,ni_quadra_drawbox=x=100:y=100:h=1720:w=880:c=red:x
1=200:y1=100:w1=300:h1=200,ni_quadra_scale=iw:ih:format=yuv420p ' -c:v

h264 ni_quadra_enc -c:a copy output.h264

NETINT © 2024 Page 165 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.12 ni_quadra_drawtext

The ni_quadra_drawtext filter is based on FFmpeg’s native drawtext filter. It draws text on top of
a video frame using the libfreetype library, and works with NETINT hardware frame only. The
ni_quadra_drawtext filter parameters are identical to those of FFmpeg drawtext filter when
drawing only one drawtext. Reference FFmpeg documentation of drawtext parameters for
details.

The ni_quadra_drawtext filter only supports NETINT hardware AVFrame as input and output.

The drawtext filters compilation has dependency of freetype and fontconfig libraries. On Linux
hosts these libraries can be installed by the following commands:

e sudo apt-get install libfreetype6-dev

e sudo apt-get install libfontconfigl-dev

In addition, building of FFmpeg/libav needs to have those libraries enabled. A configurable
option (disabled by default) is added into build_ffmpeg.sh to enable this:

‘ build_ffmpeg.sh --nidrawtext

NETINT © 2024 Page 166 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters
The following are the ni_quadra_drawtext parameters when drawing multiple texts
simultaneously:

text/(t0-t31)
Specify the text to write.
Default: NULL

X, y/(x0-x31), (y0-y31)

The expressions which specify the top left corner coordinates of the text. It
Default: 0”

font/(f0-f31)
Specify the font of the text to write.

Default: “Sans”

fontcolor/(fc0-fc31)
Specify the color of the text to write.
Default: “black”

fontsize/(fs0-fs31)
Specify the sizer of the text to write.

Default: 36

fontcolor_expr/(fc_expr0 -fc_expr31)
Specify the color of the text to write by RGB.
Default:NULL

NOTE: If fontcolor_expr was set, it will overwrite the corresponding fontcolor setting.

NETINT © 2024 Page 167 of 228

" NETINT
Quadra Integration & Programming Guide

The following example shows how to print a time stamp onto a transcoded H.264 stream using
ni_qguadra_drawtext, and can draw up to 32 texts simultaneously:

ffmpeg -y -c:v h264_ni_quadra_dec -xcoder-params "out=hw" -i input1080p.h264 -
filter_complex
"ni_quadra_drawtext=font=Sans:fontcolor=White:text='%{pts¥:localtime¥:1456007118}':x=1050
:y=680[out]" -map [out] -c:v h264_ni_quadra_enc output.h264

ffmpeg -y -c:v h264_ni_quadra_dec -xcoder-params "out=hw" -i input1080p.264 -vf
"ni_quadra_drawtext=f0=Sans:fc_exprO=#0000ff:fs0=36:t0=hello:x0=100:y0=100:f1=Sans:t1=hell
ol:fc_expr1=#00ff00:fs1=36:x1=300:y1=100" -c:v h264_ni_quadra_enc output2.h264

ffmpeg -y -c:v h264_ni_quadra_dec -xcoder-params "out=hw" -i input1080p.h264 -
filter_complex
"ni_quadra_drawtext=f0=Sans:fs0=36:t0=hello:x0=100:y0=100:t1=hello1:fs1=36:x1=300:y1=100:
t2=hello2:fs2=36:x2=500:y2=100:t3=hello3:fs3=36:x3=700:y3=100:t4=hello4:fs4=36:x4=900:y4=
100:t5=hello5:fs5=36:x5=1100:y5=100:t6=hello6:fs6=36:x6=1300:y6=100:t7=hello7:fs7=36:x7=1
500:y7=100:t8=hello8:fs8=36:x8=1700:y8=100:t9=hell09:fs9=36:x9=100:y9=200:t10=hello10:fs1
0=36:x10=300:y10=200:t11=hello11:fs11=36:x11=500:y11=200:t12=hello12:fs12=36:x12=700:y1
2=200:t13=hello13:fs13=36:x13=900:y13=200:t14=hello14:fs14=36:x14=1100:y14=200:t15=hell
015:fs15=36:x15=1300:y15=200:t16=hello16:fs16=36:x16=1500:y16=200:t17=hello17:fs17=36:x
17=1700:y17=200:t18=hello18:fs18=36:x18=100:y18=500:t19=hell019:fs19=36:x19=300:y19=50
0:t20=hell020:fs20=36:x20=500:y20=500:t21=hello21:fs21=36:x21=700:y21=500:t22=hello22:fs
22=36:x22=900:y22=500:t23=hell023:fs23=36:x23=1100:y23=500:t24=hell024:fs24=36:x24=130
0:y24=500:t25=hell025:fs25=36:x25=1500:y25=500:t26=hell026:fs26=36:x26=1700:y26=500:t27
=hello27:fs27=36:x27=100:y27=900:t28=hell028:fs28=36:x28=300:y28=900:t29=hell029:fs29=36
:x29=500:y29=900:t30=hello30:fs30=36:x30=700:y30=900:t31=hello31:fs31=36:x31=900:y31=90
O[out]" -map [out] -c:v h264_ni_quadra_enc output.h264

NETINT © 2024 Page 168 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.13 ni_quadra_bgr

The ni_quadra_bgr background removal filter analyses input frames, inferences these images

using the Al module (segm32), segments the foreground and background of the input images,
and then removes the background. The output is kept in RGBA format to allow later overlay to
judge fore and background based on value of alpha channel.

The filter takes a segm_32 object segmentation model as input, down to the Al module specified
by the user. The imported model will be unfolded and initialized in memory. As for the segm32
model, the dimensions of the input and output are as defined. The segm32 model requires a
tensor with shape 256 x 144 (width x height) and a pixel format of BGR Planar. In this case, the
filter needs to scale the input frames and do the format translation to adapt to the different
resolutions. Currently the filter only supports hardware frames. The 2D Engine is used to do the
scaling and format conversion and then the result is passed to the Al module to perform the
inferences.

When the inference completes the output tensor is then retrieved by the filter which then
performs some post-processing to segment the foreground and background. The result of the
post-processing is the alpha data is posted to the alpha channel of the RGBA output. This is then
returned back to Quadra HW in the form of a hwupload such that the filter retains HWframe
pixel format.

NETINT © 2024 Page 169 of 228

" NETINT
Quadra Integration & Programming Guide

Parameters

The following are the ni_quadra_bgr parameters:

nb
Specifies the Al module (segm32.nb) network binary file path including the file
name. This field is required for the filter to work.
Supported Values: String
Default: Null
skip

Specifies the number of frames to skip between inference. When set to 0, all
frames are inferenced. When set to 1, every 2" frame is inferenced. When set to
2, every 3™ frame is inferenced.

Supported Values: 0 or higher
Default: 0

The following example shows using the ni_quadra_bgr filter to overlay input stream on top of
background image.

ffmpeg —vsync 2 -i theatre.bmp ¥

-c:v h264_ni_quadra_dec -dec 0 -xcoder-params 'out=hw:scale0=274x154'" -i ken0.h264 ¥
-c:v h264_ni_quadra_dec -dec 0 -xcoder-params 'out=hw:scale0=274x154" -i ken1.h264 ¥
-c:v h264_ni_quadra_dec -dec 0 -xcoder-params 'out=hw:scale0=274x154'" -i ken2.h264 ¥
-filter_complex "[0:v]format=rgba,ni_quadra_hwupload=0[a0]; ¥
[1:v]ni_quadra_bgr=nb=segm32_tflite.nb:skip=1[al]; ¥
[2:v]ni_quadra_bgr=nb=segm32_tflite.nb:skip=1[a2]; ¥
[3:v]ni_quadra_bgr=nb=segm32_tflite.nb:skip=1[a3]; ¥
[a0][a1][a2][a3]ni_quadra_xstack=inputs=4: ¥

layout=0_0 ¥

|600_558|810_558|1026_558: ¥

size=1920_1080 ¥

|274_154|274_154|274_154, ¥

ni_quadra_scale=format=yuv420p[out]" ¥

-map "[out]" ¥

-c:v h264_ni_quadra_enc -enc 0 xstack_3_ppl_theatre.mkv

NETINT © 2024 Page 170 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.14 ni_quadra_ai_pre

The ni_quadra_ai_pre Al pre-processing provide a filter to do picture pre-processing by Al
model. The pixel format and resolution depend on the Al model and the input of picture.

The filter takes a segm_32 object segmentation model as input, down to the Al module specified
by the user. The imported model will be unfolded and initialized in memory. As for the segm32
model, the dimensions of the input and output are as defined. The segm32 model requires a
tensor with custom designed and should be match to input resolution.

The input and output frame are all HW frame.

Parameters

The following are the ni_quadra_ai_pre parameters:

nb
Specifies the Al module (segm32.nb) network binary file path including the file
name. This field is required for the filter to work.
Supported Values: String
Default: Null
mode

Specifies the Al processing mode. mode=0 means the Al model will process the
whole YUV, while mode=1 means the Al model will only process Y channel and
keep U and V unchanged. User should specify network binary file according to

the mode.

Supported Values: O(YUV), 1(Y only)

Default: 0

keep_alive_timeout
Specifies a session keep alive timeout value. This is a periodic request/response
between libxcoder and XCoder firmware that when timed out, terminates the
session instance in the XCoder firmware.

Supported Values: Integer in the range 1 to 100
Default: 3

timeout

Specifies timeout value for processing one frame.
Supported Values: Integer in the range 1 to 100
Default: 3

NETINT © 2024 Page 171 of 228

" NETINT
Quadra Integration & Programming Guide

The following example shows using the ni_quadra_ai_pre filter to do picture pre-processing on
1080p clip transcode.

ffmpeg -y -loglevel info -c:v h264_ni_quadra_dec -dec 0 -xcoder-params "out=hw" -i
Dinner_1920x1080p30_300.h264 -vf ni_quadra_ai_pre=nb=usm_1080P_levell.nb -c:v
h265_ni_quadra_enc -enc -1 -xcoder-params "RcEnable=1:bitrate=1000000" ai_1080p_300.h264

NETINT © 2024 Page 172 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.15 ni_quadra_delogo

The ni_quadra_delogo filter allows you to blur the area you selected as delogo do. You can select
the start point and area to blur. ni_quadra_rotate only supports hardware AVFrames as input
and output.

Parameters

The following are the ni_quadra_delogo parameters:

x/y

The expressions which specify the top left corner coordinates of the delogo
area. It defaults to 0.

w/h

The expressions which specify the width and height of the delogo area;

The following example shows how to use delogo. The decoder decodes a H.264 input using the
h264 ni_quadra_dec, ni_quadra_delogo blurs an area with x=600, y=400, w=300, h=200 and
pass it to h265_ni_quadra_enc for encoding. It does not support iw and ih input parameters.

ffmpeg -y -loglevel info -c:v h264_ni_quadra_dec -dec 0 -xcoder-params "out=hw" -i
Dinner_1920x1080p30_300.h264 -vf ni_quadra_delogo=600:400:300:200 -c:v
h265_ni_quadra_enc —enc 0 delogo.h265

NETINT © 2024 Page 173 of 228

" NETINT
Quadra Integration & Programming Guide

10.1.16 ni_quadra_merge

The ni_quadra_merge filter will merge decoder ppu0 and ppul as one frame. The inputs are
from decoder output directly with hardware AVFrames. The filter uses ppu0 Y as Y data and
ppul UV as UV data, scale the Y size to UV size and merge into one. The ppul AVFrame cannot
be used as Mult inputs because the Y data is changed by merge filter. The ppu0 and ppul must
have the same format. The inputs are only support YUV420P, NV12 YUV420P10LE and PO10LE
format. ni_quadra_merge only supports hardware AVFrames as input and output.

Parameters

The following are the ni_quadra_merge parameters:

Filterblit

Specifies the merge algorithm. The default is a simple blit function that uses an
algorithm similar to the nearest neighbor algorithm. When the filterblit
parameter is set to 1 then the filterblit function will be used for scaling. The
filterblit function uses an algorithm that is similar in quality to the bicubic
algorithm. When the filterblit parameter is set to 2, a bicubic algorithm is used.
The parameter only applies ppu0 Y data.

Supported Values: Integer in the range 0 to 2
Default: 0

The following example shows how to use merge. The decoder decodes a H.264 input using the
h264_ni_quadra_dec, ni_quadra_merge will scale ppu0Q Y to the same size as ppul, merge ppu0
Y and ppul UV and pass it to h265_ni_quadra_enc for encoding.

ffmpeg -c:v h264_ni_quadra_dec -dec 0 -xcoder-params
out=hw:semiplanarO=1:enableOQut1=1:scale1=1280x720:semiplanarl=1 -i test.h264 -vf
“ni_quadra_merge=filterblit=2" -c:v h265_ni_quadra_enc —enc 0 merge.h265

NETINT © 2024 Page 174 of 228

" NETINT
Quadra Integration & Programming Guide

11 Supported Versions of FFmpeg

The FFmpeg versions below are supported on Linux

e 311
e 342
e 413
e 421
e 431
o 44
e 50
e 6.0
e 6.1

FFmpeg version 4.3.1 is also supported on Windows, Android and MacOS. This version has been
fully validated for Windows.

Note : Not all Quadra features are supported on all versions of FFmpeg. Some features are not
supported on the older versions of FFmpeg. FFMpeg 3.1.1 has the following limitations:

- Regular Linux and Kernel version support only; No support for Windows, Android,
MacOS or Docker container

- Supports SW frames only, so does not support HW frames

- H.264/H.265 decode/encode/transcode only. No support for other codecs or NETINT
filters. For example, HW frame upload/download, and scalers etc. are not supported

- HDR10 user-specified mastering display color volume and content light level values only
- HDR10+ or DolbyVision is not supported

The feature descriptions throughout this document will state which FFmpeg versions are
supported. If no FFmpeg version is listed, the feature will be supported in all FFmpeg versions on
Linux.

The following table lists all features supported on each FFmpeg version.

NETINT © 2024 Page 175 of 228

Quadra Integration & Programming Guide

v

Feature

&
[\
=
w

N
=

w
(=)

w
=

ETINT

=

Decoder

H264

v

Vv

v

H265

VP9

JPEG

Encoder

H264

H265

AV1

JPEG

Dec Xcode

All xcoder params

A PR PP PP PR P
<<l ||| lPd

<<l ||| lPd

<<l ||| ld

Enc Xcode

dolbyVisionProfile

Others xcoder Params

Filters

ni_quadra_scale

PREN RN N PN PN PN PN PN PN PN N

ni_quadra_overlay

ni_quadra_split

ni_quadra_crop

ni_quadra_pad

ni_quadra_hwupload

ni_quadra_roi

ni_quadra_bg

ni_quadra_bgr

ni_quadra_xstack

ni_quadra_rotate

ni_quadra_drawbox

ni_quadra_drawtext

ni_quadra_ai_pre

ni_quadra_delogo

<l Xl <X
<l Xl Xl <X
el Xl a] <X

PN I N N - - = - - I P - - I - - I e

PN I N N - - = - - I P - - I - - I e

S SESNENESESENENESENESESESESENEESENENENENESENE S SENES

L | << << <] <] &< <

L ||| <]] &< 44 <& <

P PR PN PN PN PN R PN PN PN PN PN PN PN R

ni_quadra_merge

<

Advanced
Feature

HDR

Refer to 12.1,

dolbyVisionProfile is su

pported from

:b
w
=

ROI

Refer to 12.2, support

from 4.

2.1

Closed Captions

Vv Vv Vv

v

v

<
<

<

Rate Control

v Vv Vv

Vv

Vv

<
<

<_

<

User Data, Unreg SEI
Passthrough

v v Vv

Vv

Vv

<
<

<_

IDR Frame Forcing

Vv v v

SCTE 35

Others

AV1 tile

HEVC tile

<] < X<
X

NETINT © 2024

Page 176 of 228

" NETINT
Quadra Integration & Programming Guide

12 Advanced Feature Support

12.1 HDR

Quadra completely supports 3 HDR standards, HLG, HDR10 and HDR10+ for H.264, H.265, and
AV1. These standards all use 10 bit color for greater dynamic range, a wider range of colors as
per ITU-R BT.2020. For Dolby Vision, Quadra supports a compatibility mode such that the Dolby
Encoding Engine can use the Quadra encoder for single base layer profile 5 Dolby Vision
encoding with H.265. This mode is enabled by setting the encoding parameter
dolbyVisionProfile=5.

HDR10/10+ uses a Perceptual Quantization transfer curve as per SMPTE ST 2084 that supports a
much larger range of brightness but is not backwards compatible with standard dynamic range
(SDR). The colors of HDR10/10+ content played back on an SDR monitor will appear very faded.
HLG on the other hand uses the ARIB STD-B67 transfer curve which provides greater dynamic
range at high brightness and is backward compatible with the SDR gamma curve at low
brightness and so an HLG stream can be played on both SDR and HDR monitors.

The HDR colour information is carried in the VUI for H.264 and H.265 and in the metadata OBU
for AV1.

The following 3 standards specify the HDR colour information:

Standard VUI Color Information

HLG color_primaries=9 (ITU-R BT.2020-2 Wide Gamut Color)

ATSC A/341 transfer_characteristics=18 (ARIB STD-B67 HLG Transfer Curve)
matrix_coeffs=9 (ITU-R BT.2020-2 Non-constant Luminance)

HLG color_primaries=9 (ITU-R BT.2020-2 Wide Gamut Color)

ETSI ETSI TS 101 transfer_characteristics=14 (ITU-R BT.2020-2 Functionally equivalent to

154 BT.709)
matrix_coeffs=9 (ITU-R BT.2020 Non-constant Luminance)

HDR10/10+ color_primaries=9 (ITU-R BT.2020-2 Wide Gamut Color)
transfer_characteristics=16 (SMPTE ST2084 PQ Transfer Curve)
matrix_coeffs=9 (ITU-R BT.2020-2 Non-constant Luminance)

NETINT © 2024 Page 177 of 228

" NETINT
Quadra Integration & Programming Guide

HDR bitstreams may also carry static metadata containing the parameters of the mastering
display using content light level info, and the mastering display color volume.

HDR10+ adds dynamic metadata that can update the color information on a frame by frame
basis. This metadata is stored in T35 payloads as per SMPTE 2094-40. The HDR metadata is
stored using SEls for H.264 and H.265 or equivalent metadata OBU types for AV1.

There are no special commands to enable HDR transcoding. The Quadra decoder will pass HDR
color information and HDR metadata up to FFmpeg if the bitstream contains it, and the Quadra
encoder will insert the HDR color information and metadata in the encoded bitstream if supplied
by FFmpeg. Transcoding a compliant HDR10 bitstream will result in a compliant HDR10
bitstream. The same for HDR10+ and HLG.

FFmpeg supports specifying the color information on the command line with 3 parameters that
map to the VUI color parameters as follows. These parameters may be specified in the input or
output sections of the FFmpeg command line. If the color information is specified on the
command line, it will replace any color information that is contained in the input media.

These will be properly set by the decoder if transcoding.

FFmpeg Color Parameter VUI Color Parameter
color_primaries color_primaries
color_trc transfer_characteristics
colorspace matrix_coeffs

The following is an example FFmpeg command line to encode a 10 bit HLG YUV file to H.265 as
per ATSC requirements:

ffmpeg -f rawvideo -pix_fmt yuv420p10Ie -s:v 3840x2160 -r 60 -color_primaries 9 -color_trc
18 -colorspace 9 -i Input_3840x2160_10bit_le.yuv -enc 0 -c:v h265_ni_quadra_enc -xcoder-
params "RcEnable=1:bitrate=20000000" outputATSCHIgT408.265

Note: While ETSI specifies transfer characteristics=14 for HLG in the VUI, they also specify the
inclusion of an alternative transfer characteristics SEl that specifies a preferred transfer
characteristics of 18. The Netint decoder will return the preferred transfer characteristics instead
of the VUI transfer characteristics if this SEl is present. The NETINT Encoder has a parameter
(prefTRC) to specify the inclusion of this SEI, and to set its value.

NETINT © 2024 Page 178 of 228

" NETINT
Quadra Integration & Programming Guide

For example, the following command line to encode a 10 bit HLG YUV file to H.265 as per ETSI
requirements is as follows:

ffmpeg -f rawvideo -pix_fmt yuv420p10le -s:v 3840x2160 -r 60 -color_primaries 9 -color_trc
14 -colorspace 9 -i Input_3840x2160_10bit_le.yuv -enc 0 -c:v h265_ni_quadra_enc -xcoder-
params "RcEnable=1:bitrate=20000000:prefTRC=18" outputETSIHIgT408.265

Note: FFmpeg does not currently support specifying the static and dynamic metadata for
HDR10/10+.

An example of HDR transcoding between H.265 to H.264 is as follows. If the input is 10 bits, then
the output will be 10 bits. Any HDR VUI color information from the input bitstream will be
transferred to the output bitstream. Any static or dynamic HDR10/10+ metadata from the input
bitstream will be transferred to the output bitstream. When a ETSI HLG bitstream is decoded,
the preferred transfer characteristics will be used in the VUI of the output bitstream.

ffmpeg -c:v h265_ni_quadra_dec -dec O -i inputHDR.ts -c:a copy -enc 0 -c:v
h264 ni_quadra_enc -xcoder-params "RcEnable=1:bitrate=20000000" outputHDR.ts

If an ETSI compliant output bitstream is required then the VUI transfer characteristics can be
overwritten on the command line and the preferred transfer characteristics specified.

ffmpeg -c:v h265_ni_quadra_dec -dec O -i inputHDR.ts -c:a copy -color_trc 14 -c:v
h264_ni_quadra_enc -enc 0 -xcoder-params "RcEnable=1:bitrate=20000000: prefTRC=18"
outputHDR.ts

Note: HLG is supported in all supported versions of FFmpeg. HDR10 is supported in FFmpeg
version 4.1.3 or higher, while HDR10+ and Dolby Vision compatibility are supported in FFmpeg
4.2.1 or higher.

NETINT © 2024 Page 179 of 228

" NETINT
Quadra Integration & Programming Guide

12.2 Region of Interest (ROI)

ROl is a feature of the encoder that permits the quality of some regions to be improved at the
expense of other regions. This is achieved by specifying an ROl map containing the QP (0-51) for
each 16x16 pixel block for H.264, and 32x32 pixel block for H.265, or 64x64 pixel block of AV1.

A higher QP means lower quality, a lower QP means higher quality. If rate control is disabled, the
QPs are used directly for encoding, if rate control is enabled, the encoder scales the QPs as
necessary to meet the bitrate target. When ROl is enabled, the ROl map can be updated,
enabled, or disabled on a frame by frame basis.

As of version FFmpeg 4.2.1, FFmpeg supports an API for ROl that permits a number of
rectangular ROl regions to be defined along with a QP Offset in the range of -1 to +1. The
FFmpeg QP Offset corresponds to a QP Offset of -25 to +25 on the encoder. As of version
FFmpeg 4.3.1, FFmpeg supports an ROI filter (addroi) that permits a number of ROI regions to be
specified on the command line. Unfortunately, this filter is fairly limited since it does not permit
the ROl regions to be updated on a frame by frame basis. For more detail see the Region of
Interest application note.

The FFmpeg Region Of Interest (ROI) filter inferences from input frames using the in-built Al
module in Quadra. It identifies the bounding coordinates of chosen objects and classes within
images, and then wraps the coordinates into ROl side data.

The filter loads a YOLOv4 object detection model into the user specified Al module. This model
will then be unfolded and initialized in memory. The input and output dimensions are also
defined.

YOLOv4 models require a tensor with shape 416x416 and pixel format BGRPlanar as the input.
This means that the filter needs to scale the input images and perform the format conversion.

The filter supports both hardware frames and software frames.

NETINT © 2024 Page 180 of 228

" NETINT
Quadra Integration & Programming Guide

12.2.1 Software Frame

For software frames, only YUV420P is supported as the input. The SWS library in FFmpeg is used
to perform software scale. FFmpeg doesn’t support BGRPlanar, and so the filter first scales the
input image to a 416x416 RGB24 AVFrame, it then rearranges the frame to a compact
RGRPlanar tensor, and then transfers the tensor down to the Al module to perform the
inference.

12.2.2 Hardware Frame

For hardware frames, because Quadra 2D supports BGRPlanar output in the format conversion,
the filter passes hardware frames directly to the 2D engine to perform scaling. The scaled image
is stored in another hardware frame. Once scaling completes, it passes the scaled hardware
frame over to the Al module for inference.

Before inference begins, an output buffer is preset in the model. When the inference is
complete the output tensor will be saved in the output buffer. The filter then fetches the output
tensor from firmware. It executes post processing on the output tensor to compute the object
boxes and class labels inside the images. If there are any objects detected, their bounding boxes
are converted to four coordinates relative to the upper left zero point of the images. Each
objects’ coordinates will be put into the ROI side data including a preset QP offset. All ROl side
data within an image is appended to, then passed down to the encoder along with the actual
images themselves.

NETINT © 2024 Page 181 of 228

Quadra Integration & Programming Guide

12.2.3 Parameters

" NETINT

The table below defines the parameters supported by the ni_roi filter.

Table 1: Quadra ni_roi Parameters

Parameter

\Values

Description

nb

String
Default: NULL

Specify the full filename and path of the Al
modules network binary. Without this required
field, this filter won’t work.

gpoffset

[-1.0, 1.0]
Default: 0.0

Specify the ROl QP offset so that the encoder can
set the specific QP in these regions based on the
QP offset.

ROl side data structure is defined in FFmpeg/
libavutil/frame.h, named struct
AVRegionOfinterest.

devid

[-1, 2147483647]
Default: 0

Specify the Device ID of the Quadra device to
use. A value of -1 will collocate the instance on
the same device as the input YUV hardware
frame. If there are not enough resources, or if
the device ID is not specified then the resource
monitor will decide where to place the instance.

obj_thresh

[0,1.0]
Default: 0.25

Specify the YOLOv4 post processing object
threshold. Each region has a score. When the
score reaches the obj_thresh, it will be specified
as an object. The higher the threshold, the
harder it is to be defined as an object.

nms_thresh

[0,1.0]
Default: 0.45

Specify the YOLOvV4 post processing NMS |IOU
threshold. The goal is to select the bounding
boxes with the highest detection probability and
eliminate all the bounding boxes whose
intersection Over Union value is higher than a

given IOU threshold.

NETINT © 2024

Page 182 of 228

" NETINT
Quadra Integration & Programming Guide

12.2.4 Examples

The command line below shows an example using the ROI filter during transcoding with
hardware frame mode.

ffmpeg -y -vsync 0 -init_hw_device ni=f00:0 -dec 0 -c:v h264_ni_quadra_dec

-xcoder-params ‘out=hw’ -i cr7_1920x1080.h264 -filter_hw_device foo -vf ‘ni_roi
=nb=./network_binary_yolov4_head.nb:qpoffset=-0.6’ -enc 0 -c:v h264_ni_quadra_enc
-xcoder-params ‘roiEnable=1:RcEnable=1:bitrate=500000’ -an cr7_1080p_roi_b500000.h264

The following command line shows a software frame mode example.
ffmpeg -y -vsync 0 -dec 0 -c:v h264_ni_quadra_dec -i cr7_1920x1080.h264 -vf ‘ni_roi

=nb=./network_binary_yolov4_head.nb:qpoffset=-0.6’ -enc 0 -c:v h264_ni_quadra_enc
-xcoder-params ‘roiEnable=1:RcEnable=1:bitrate=500000’ -an cr7_1080p_roi_b500000.h264

NETINT © 2024 Page 183 of 228

¢ NETINT
Quadra Integration & Programming Guide

The following comparison illustrates the improvements when using an ROl filter. The top picture
is without an ROI filter, and the bottom picture is with an ROI filter with a bitrate of 500kbp.
The human faces in picture have a mosaic effect just like the other regions in the screenshot

@RocByRonalkto

NETINT © 2024 Page 184 of 228

¢ NETINT
Quadra Integration & Programming Guide

This image is zoomed in from a screenshot with ROl to show the QP of the human face and
areas surrounding it.

The qpoffset is set as -0.6’, which means the QP of the ROI has an offset value of -15 from its
preset QP.

The non-human face MBs have a QP value of 32, while the human face MBs have a QP value of
17.

NETINT © 2024 Page 185 of 228

" NETINT
Quadra Integration & Programming Guide

12.3 Closed Captions

Quadra supports EIA CEA-708 closed captions for H.264, H.265, and AV1. There are no special
encoder parameters to set, the Quadra decoder automatically passes closed captions up to
FFmpeg if present in the bitstream and the Quadra encoder will automatically insert closed
captions in the encoded bitstream if they are present in the incoming stream to encoder.
FFmpeg stores CE708 closed captions as ATSC A53 Part 4 Closed Captions side data. Closed
captions are stored in the encoded bitstreams as T.35 payloads formatted according to CEA-708.

NETINT © 2024 Page 186 of 228

" NETINT
Quadra Integration & Programming Guide

12.4 Rate Control

There are 5 rate control modes supported by the NETINT encoder:

CQP: Constant QP mode, enabled by setting RCEnable=0, uses a fixed QP specified by “intraQP”
for I-frames plus an offset defined in the GOP structure for other frames. This mode is usually
used for encoder quality evaluation and is not recommended to achieve the best encoding
efficiency. By default, “RcEnable” parameter is 0 which means CQP mode.

CRF: Constant Rate Factor Mode, enabled by setting the rate factor parameter crf. With CRF the
encoder varies the bitrate to maintain constant subjective quality.

Capped CRF: Capped Constant Rate Factor Mode, enabled by setting the rate factor parameter
crf together with bitrate, vbvBufferSize , vbvMaxRate (optional), vbvMinRate (optional). Capped
CRF adds bitrate constraint on top of CRF.

CBR: Constant Bitrate Mode, enabled by setting RCEnable=1 and vbvBufferSize>0, varies the QP
on a frame by frame basis to maintain bitrate as set by “bitrate” parameter and to constrain
instant bitrate by video buffering verifier as set by “vbvBufferSize” parameter. In this mode, the
encoder buffers up an amount of bitstream as specified by the vbvBufferSize parameter to
perform rate control. This buffer is typically known as a video buffering verifier. The larger it is,
the better for rate control, but this comes with an increase in delay and less constrained instant
bitrate.

o Please also note when culevelRCEnable=1 (enable block level rate control), and
lookaheadDepth=0 (no lookahead), encoder perceives bitrate parameter as maximum
bitrate or average bitrate depending on the bitrateMode parameter - please refer to
bitrateMode parameter descriptions for details.

ABR: Average Bitrate Mode, enabled by setting RCEnable=1 and vbvBufferSize=0, varies the QP
on a frame by frame basis to maintain an average bitrate as set by the “bitrate” parameter. In
ABR mode, rate control maintains average bitrate to match target bitrate, but is not constrained
by VBV buffer, and therefore instant bitrate may have more fluctuations compared to CBR. On
the other hand, ABR may produce bitrate more closely matching the target bitrate.

NETINT © 2024 Page 187 of 228

" NETINT
Quadra Integration & Programming Guide

Constrained VBR Mode: Constrained Variable Bitrate Mode, enabled by setting RCEnable=1,
vbvBufferSize > 0, and vbvMaxRate > 0, allows higher instant bitrate, while still maintaining
average bitrate close to target bitrate. Compared to CBR mode, Constrained VBR mode may
produce higher quality, at the cost of higher peak rate.

NETINT © 2024 Page 188 of 228

" NETINT
Quadra Integration & Programming Guide

12.5 User Data Unregistered SEI Passthrough

Quadra supports passthrough of user data unregistered SEI payloads during transcoding for
H.264 and H.265. This can be enabled by specifying the decoder codec parameter
user_data_sei_passthru as per the following example:

ffmpeg -c:v h264_ni_quadra_dec —user_data_sei_passthru 1 -i input.264 -c:v
h265_ni_quadra_enc output.265

This feature is intended for passing through small user data unregistered SEI messages up to
1024 bytes in size. For more details on user data passthrough please see the Application Note.

NETINT © 2024 Page 189 of 228

" NETINT
Quadra Integration & Programming Guide

12.6 IDR Frame Forcing

The QUADRA encoder supports forcing IDR frames at any point. Forcing an IDR is useful for
several reasons:

e When doing commercial substitution, an I-frame is required in the bitstream upon
returning from the commercial. This frame will likely not coincide with the intra period
and so a forced IDR frame can be used.

e Another application is to force IDRs in the transcoded bitstream at the same period as in
the input bitstream.

FFmpeg supports the forcing of IDRs using the -force_key_ frames parameter. This parameter can
accept a list of frame numbers or times for forcing. It also supports regular expressions in the
form of -force_key_frames ‘expr:gte(t,n_forced*REFRESH_PERIOD)’ where REFRESH_PERIOD is
the refresh period in seconds (ex. 1,2,etc). The period can also be specified in frames using -
force_key_frames ‘expr:gte(n,n_forced*REFRESH_FRAMES)’ where REFRESH_FRAMES is the
refresh period in frames.

Note: These forced IDR frames are generated in addition to any generated by a non-zero
intraPeriod parameter.

An example FFmpeg command line to encode a 1920x1080 YUV420 video to H.265 and force IDR
pictures every 2 seconds (-force_key_frames). The intraPeriod parameter is set to zero so that
the only | frames are the forced ones:

ffmpeg -f rawvideo -pix_fmt yuv420p -s:v 1920x1080 -r 30 -i input.yuv -force_key_frames
‘expr:gte(t,n_forced*2)’ -c:v h265_ni_quadra_enc
-xcoder-params “intraPeriod=0:RcEnable=1:bitrate=7500000" output.265

The force_key_frames parameter can also be used while transcoding to force I-frames at the
same positions as in the source file as shown in the following example:

ffmpeg -c:v h264_ni_quadra_dec -i input.264 -force_key_frames source
-c:v h265_ni_quadra_enc -xcoder-params “intraPeriod=0:RcEnable=1:bitrate=7500000"
output.265

See the FFmpeg documentation for more information on the —force_key_frames parameter.

NETINT © 2024 Page 190 of 228

" NETINT
Quadra Integration & Programming Guide

12.7 Sequence change

Sequence change is a feature that allows on-the-fly resolution change in the input stream.

12.7.1 Decoder
The Quadra decoder handles the sequence change automatically. The decoder detects the

resolution change and reports the new resolution to upper layer (libxcoder).

The libxcoder handles this change by reallocating a data buffer based on the new picture size, it
receives YUV data at the new resolution accordingly.

12.7.2 Encoder

When receiving YUV frames at different resolutions within the sequence change scenario, the
default behavior of all FFmpeg versions is to auto-scale to the original resolution and then pass
them on to the encoder. In this case, the Quadra encoder would proceed as normal since the
received picture size does not change.

12.7.3 FFmpeg autoscale command line option

An output option autoscale is available (enabled by default), as a NETINT and FFmpeg patch (see
References for details). If autoscale is disabled, FFmpeg won’t auto insert a scale filter in the
filter graph to force scaling the whole decoded stream into the same size as that of the first
frame. If noautoscale is used, then when a sequence change is detected nienc will close the
current Quadra encoding session, and will then start a new one at the new resolution.

An example of disabling auto scaling is as follows:

ffmpeg -hide banner -vsync 0 -c:v h265 ni_ quadra dec -i sc.265 -
noautoscale -c:v h264 ni_quadra_enc sc-265-no-autoscale.264

The autoscale option is enabled by default so there is no need to specify it on the command line
if its required to be enabled. If autoscale however needs to be disabled, then specify it as

-noautoscale

on the command line.

NETINT © 2024 Page 191 of 228

" NETINT
Quadra Integration & Programming Guide

12.8 SCTE 35 Cue Out and Cue In

Based on the SCTE 35 2023r1 standard from Digital Program Insertion Cueing Message — SCTE,
FFmpeg 6.1 has been extended to support

1. Decoding of SCTE 35 data to force keyframes on Cue Out and Cue In
- Requires SCTE 35 data stream to be mapped e.g., using FFmpeg’s -map
2. SCTE 35 markup in HTTP Live Streaming (HLS) playlist using EXT-X-SCTE35

Decoding logic is currently limited to the following:
-splice insert()

-splice event cancel indicator 0

-out_of network _indicatorOor1l

-duration_flagOorl

-If duration_flag is set for CUE OUT, a CUE IN will be added based on auto_return and

duration and any subsequent CUE IN will be ignored

-program_splice_flaglandsplice_immediate_flagO

NETINT © 2024 Page 192 of 228

https://wagtail-prod-storage.s3.amazonaws.com/documents/SCTE_35_2023r1.pdf
https://www.scte.org/standards/library/catalog/scte-35-digital-program-insertion-cueing-message/
https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis

" NETINT
Quadra Integration & Programming Guide

13 Performance

There are many methods for improving performance when using Quadra. This section will describe each
recommended method.

13.1 Low Latency Mode

13.1.1 Encoder

Video encode latency is defined as the delay between a video frame input to the encoder and
the SAME frame output from the encoder.

I [I/] [Ji] T 1T I 7
[[/ [B [
/ N [/ [/ /
Imput te encoder [o [1 [2 |z [4 / | [7
! I { /

tto an |/ s [|
{rrame, T8} [] /| [/ [/ [!
[‘J / f a'f [a! af | | ;"II / /
e _(6’ A \{6’ \\\yae.
u, N @"q,

k. 1 r r ! ' N r .

o) 7 | 7/ 7 [
Dutput form encoder: \‘\\ In' [.'l |lI .1"1 I,' .'II |l.'l .'l
{PKG_PTS) “af) f.-' , | / [[~a/

In the above encode latency diagram we can see the order of display frames is increasing
sequentially. When there is a B frame, the DTS and PTS may be in different order.

NETINT © 2024 Page 193 of 228

Quadra Integration & Programming Guide

13.1.2 GOP Requirements to Minimize Encoder Latency

" NETINT

As discussed above, when B frames are used the frames may need to be encoded out of order,
this will increase latency. Therefore, to minimize latency we need to use a low delay GOP. A low
delay GOP is one in which all the frames are encoded in sequence. On Quadra, the low delay
GOPs are gopPresetldx=1, 3, 7, and 9, or a custom GOP with in-sequence frames, for example
where the pocOffset increments by 1 for each frame.

The table below lists the details of the Quadra GOP Presets.

sopPresetldx [Description |GOP Size [Ref Encode Order [Max Frames [Low
Frames out of GOP
Order
1 All | 1 2 10-11-12... 0 v -
3 All B 1 2 BO-B1-B2... 0 v
4 BP 2 2 B1-PO-B3-P2.. |1
5 BBBP 4 2 B2-B1-B3-P0O 3
7 Consecutive }4 2 BO-B1-B2-B3... [0 v
BBBB
8 BBBBBBBB 8 2 B3-B2-B4-B1-B6- |7
B5-B7-BO...
0 All P 1 1 PO-P2-P2 0 v -

You can see above that the low delay GOPs have all frames in-sequence. If a low delay GOP is
not used then the encoder must buffer the incoming frames in order to encode them out of

sequence, which adds to the encoder latency.

NETINT © 2024

Page 194 of 228

" NETINT
Quadra Integration & Programming Guide

13.1.3 Encoder Low Latency Mode

The second aspect of encode latency is the buffering of input frames for better performance.
The encoder allocates additional source frame buffers to the minimum, specified in the above
Table. This is so that libxcoder can be downloading the next frame, while the encoder is
encoding the previous frame. While this does increase performance, it adds to the latency.
Therefore, we have defined a special low latency mode for the encoder. libxcoder will only send
a single frame to the encoder at a time, and does not send the next frame until it receives an
encoded frame. While this does reduce performance somewhat, it does ensure the lowest
possible encoding latency.

The actual latency is primarily determined by the length of time to encode each frame and the
number of streams being encoded. This is determined mainly by the picture size and the load on
Quadra.

Quadra has 4 encoder cores, enabling encoding with 4 instances, without any increase in
latency, 1 instance per encoder core. For example, if Quadra can encode 32 1080p30 streams in
real time, then it takes roughly 1s/30/32=1msec to encode a single frame. The latency will
increase linearly with each group of 4 encoding instances. For example the latency for instances
1-4 would be the same, the latency for instances 5-8 would be double, etc. The encoder low
latency mode is enabled with encode parameter lowDelay=1.

For example, here is a H.264 to H.265 transcode with low latency mode enabled in the encoder
and a low delay GOP (gopPresetldx=3):

ffmpeg -vsync 0 -c:v h264 ni gquadra dec —-xcoder-params “out=hw” -
1 input.264 -c:v h265 ni quadra enc -xcoder-params
"gopPresetIdx=3:lowDelay=1:RcEnable=1:bitrate=4000000"

output.265

If we set lowDelay=0, or omit it from the command above, the encoder will encode using
normal delay mode, which is the default.

Note that low delay mode requires a low delay GOP and if enabled with a high delay GOP, an
error message will be returned.

Normally, FFmpeg polls the encoder at a 200us interval when a new YUV frame is sent to the
encoder, it polls until a frame is available to read. The frame is then sent to the encoder at the
interval of input FPS. For example, for 50Hz input, the interval is 20ms. This way a frame sent to
the encoder for encoding, will only be available after 20ms. So the latency is longer than the
interval of frames. The encoder low latency mode changes this behavior. If enabled, it polls the
encoder only once, and this poll request is blocking, until a frame is available to read.

NETINT © 2024 Page 195 of 228

" NETINT
Quadra Integration & Programming Guide

Note that the latency of the first frame can be a little higher than other frames due to additional
time for buffer allocation. Also note that the latency can vary from frame to frame slightly based
on the complexity of the frame.

The graph below shows the measured latency for encoding a single 1080p H.265 bitstream with
low delay mode enabled. The source stream is in H.264, thus the abbreviation a2h, which
represents AVC to HEVC transcoding.

The command used

ffmpeg -y -nostdin -hide banner -f concat -c:v h264 ni quadra dec
-xcoder-params out=hw -1 list.txt -c:v h265 ni quadra enc -
xcoder—-params
gopPresetIdx=3:1lowDelay=1:RcEnable=1:bitrate=4000000 -f null -
2>&1 |ts '"$.s8'"!

This Guide describes the encoder lowDelay parameter as follows:

Specifies whether or not to enable the low latency mode in encoding. When enabled,
libxcoder only permits buffering of a single frame to minimize the delay.

Note that when enabled, the gopPresetldx must be 1, 3, 7, 9, 10, or 0 with a consecutive
order GOP pattern, lookaheadDepth must be 0, and multicoreJointMode must be 0.

Note that in libxcoder encoder send/receive multi-thread mode, when enabled, its value
can be a positive integer value in milliseconds for threads synchronization. It represents
the time the sending thread waits before deciding it’s in a deadlock and has to continue
without waiting for receiving thread to signal.

NETINT © 2024 Page 196 of 228

¢ NETINT
Quadra Integration & Programming Guide

encoder latency msec a2h
45

35
25
15

0.5

25

37

49

61

73

85

97
109
121
133
145
157
169
181
193
205
217
229
241
253
265
277
289
301
313
325
337
349
361
373
385
3g7
409
421
433

13.1.4 Decoder

Video decode latency is defined as the delay between a video frame input to the decoder, and
the same frame output from the decoder.

13.1.5 GOP Requirements to Minimize Decoder Latency

To minimize decode latency, a low delay GOP stream must be used in the input bitstream. A low
delay GOP has all the frames encoded in sequence. See the above table for examples of such a
GOP that can be generated by the Quadra encoder.

NETINT © 2024 Page 197 of 228

" NETINT
Quadra Integration & Programming Guide

13.1.6 Decode Low Latency Mode

A special decoder low latency mode has been defined such that libxcoder only sends a single
frame to the decoder at a time for decoding. The libxcoder does not send the next frame until it
receives the decoded frame. While this reduces performance somewhat, it ensures the lowest
decoding latency possible.

Below is a command used for decoding a stream encoded in sequence:

ffmpeg -vsync 0 -c:v h264 ni quadra dec —-xcoder-params lowDelay=1
-1 input.264 -c:v h265 ni quadra enc output.265

This Guide describes the decoder lowDelay parameter as follows:

Specifies whether to enable the low latency mode in decoding. When enabled, libxcoder
uses a different query method that returns upon frame ready to reduce polling. This
method only permits buffering of a single frame to minimize delay and therefore will
not work with non-sequentially decoded inputs. User must be aware to enable lowDelay
decode only on streams whose frames are in sequence. If improper input is provided,
the frames will be decoded and returned out of order.

Note that in libxcoder decoder send/receive multi-thread mode, when enabled, its value
can be a positive integer value in milliseconds for threads synchronization. It represents

the time the sending thread waits before deciding it’s in a deadlock and has to continue
without waiting for receiving thread to signal.

13.1.7 Summary for Minimizing Latency

To minimize decoder/encoder latency do the following:
1. Use low delay GOP with in sequence frames for decoding/encoding

2. For H.264 encode, using libxcoder parameter useLowDelayPocType=1 ensures
that the encoded bitstream can be decoded without delay.

3. Enable low delay mode in the Netint decoder or encoder

NETINT © 2024 Page 198 of 228

" NETINT
Quadra Integration & Programming Guide

13.2 Measuring Latency

Libxcoder can be compiled to generate latency information for both the decoder and encoder.
The information can be output to the FFmpeg log. This can then be used to plot latency as
shown in the graph above.

Note the following section describes the encoder latency measurement only, the decoder
latency measurement can be created using a similar method.

The libXcoder Latency reporting mechanism reports per frame latency for the frame’s duration
through the Quadra hardware. It prints logs to stderr.

13.2.1 Compiling the Latency Reporting Mechanism

To enable latency reporting, compile the libXcoder with the ‘--with-latency-display’ flag:

cd libxcoder
./build.sh -p

Next compile FFmpeg, libAVcodec, or any custom application that is integrated with Quadra.
See the “Build FFmpeg with NETINT Codec Library” section in the

QuickStartGuideQuadra_*.pdf for more instructions on the installation of the FFmpeg
application.

NETINT © 2024 Page 199 of 228

Quadra Integration & Programming Guide

" NETINT

13.2.2 Running FFmpeg with low-delay mode encoder

To provide the best throughput of frames, libXcoder’s default operation mode allows frames to
be buffered in the decoder/encoder input queue on the Quadra device itself. If the lowest
latency is desired the lowDelay xcoder parameter can be used. This will cause libXcoder to
attempt to retrieve a processed frame before sending the next frame.

An example FFmpeg command with the lowDelay xcoder-param:

ffmpeg -y -nostdin -hide banner -vsync 0 -stream loop 1 -f
rawvideo -pix fmt yuv420p -s:v 1920x1080 -r 25 -i
/mnt/ramdisk/dinner 1920x1080p30 300 br7500 b3 B265d.yuv -c:v
h265 ni quadra enc -enc 0 -xcoder-params
gopPresetIdx=3:1lowDelay=1:RcEnable=1:bitrate=4000000 -f null -

2>&1

13.2.3 Latency Logs

When decoding or transcoding through Quadra, latency report messages will appear in the
stderr of the terminal thus:

1642192725.
1642192725.
1642192725.
1642192725.
1642192725.
1642192725.
1642192725.
1642192725.
1642192725.
1642192725.

They describe:

DTS
DELTA
dLAT
elAT

NETINT © 2024

181572
181599
181626
181652
181679
181705
181732
181758
181786
181812

DTS:
DTS:
DTS:

DTS

323,DELTA
324,DELTA
325,DELTA

:326,DELTA
DTS:
DTS:
DTS:
DTS:
DTS:
DTS:

327,DELTA
328,DELTA
329,DELTA
330, DELTA
331,DELTA
332,DELTA

:8008256,eLAT:
:7805161,elAT:
:7884774,eLAT:
7990645, eLAT:
: 7730706, eLAT:
:7895577,eLAT:
:7685357,eLAT:
: 7506154 ,elAT:
:7538778,eLAT:
:7834258,elAT:

6166089;
5912997;
6053380;
6149894;
5903105;
6055641;
5832137;
5675062;
5747147;
6022893;

Decoding time stamp of frame in the timebase transmitted to libXcoder
Frame period between this frame and previous frame in nanoseconds
HW decoder latency for frame of this DTS in nanoseconds

HW encoder latency for frame of this DTS in nanoseconds

Page 200 of 228

" NETINT
Quadra Integration & Programming Guide

13.2.4 Interpreting Latency Results

The measurement mechanism exists at the lowest level of libXcoder, immediately before any
frames/packets are sent to, or received from, Quadra Hardware. The latency measured does not
account for any time spent within the FFmpeg, libAVcodec, or other parts of the libXcoder call
stack. Though this time is typically very low for functions using the APIs.

As the measurement mechanism is in libXcoder it is also dependent on higher level APIs calling
the function to retrieve frame from the decoder/encoder output buffer. The processing rate
control mechanisms such as FFmpeg’s “-re” can cause the minimum measured latency to be
higher than the frame period.

Also, be aware that the hardware sided buffering mechanisms can also cause latency. If a plot of
the measured latency appears to show any linear increase in latency from the beginning of a
stream, then the decoder/encoder buffer is likely working. These buffers allow frames to be sent
to the hardware before they are processed and sent back to the libXcoder. The “lowDelay”
encoder parameter can be used to restrict this buffering behavior on the encoder. The “-re”
ffmpeg mechanism to limit the processing frame rate can be used to regulate the frame send-
rate to the decoder, in order to minimize hardware buffering.

NETINT © 2024 Page 201 of 228

" NETINT
Quadra Integration & Programming Guide

13.2.5 Encoder Latency Measurement

13.2.6 Scope

This section will demonstrate the collection of latency measurement data for Quadra.

The Quadra and FFmpeg environment configuration and usage is not in the scope of this section.
The document assumes a Linux host installed with a Quadra card and with libxcoder and FFmpeg
successfully compiling and Quadra demonstrated for video transcoding operation.

13.2.7 Using libxcoder latency logs

This method includes enabling print outs for encoder latency time and then parsing the log data
to determine the latency measurement.

13.2.8 Build libxcoder with-p flag

Run the libxcoder build with the -p flag for latency patch.

sh build.sh -p
sudo make install

Build FFmpeg-n4.2.1, for example, as usual.

NETINT © 2024 Page 202 of 228

" NETINT
Quadra Integration & Programming Guide

13.2.9 Collect elLAT data

Run the following ffmpeg encode command with a yuv file input. It will generate an output log
file.

ffmpeg -y -nostdin -hide banner -vsync 0 -stream loop 1 -f
rawvideo -pix fmt yuv420p -s:v 1920x1080 -r 25 -i
/mnt/ramdisk/dinner 1920x1080p30 300 br7500 b3 B265d.yuv -c:v
h265 ni quadra enc -enc 0 -xcoder-params
gopPresetIdx=3:1lowDelay=1:RcEnable=1:bitrate=4000000 -f null -
2>&1 |ts '$.s' > output-y2h-0-0-0.log

The output log file will have extra log messages as follows.

1642193165.553249 DTS:1,DELTA:6965127,eLAT:5511326;
1642193165.553276 DTS:2,DELTA:8132467,eLAT:5629519;
1642193165.553303 DTS:3,DELTA:9577126,eLAT:5670137;
1642193165.553330 DTS:4,DELTA:9994202,eLAT:5658198;
1642193165.553357 DTS:5,DELTA:7654552,eLAT:5642386;
1642193165.553384 DTS:6,DELTA:10671531,eLAT:5939394;
1642193165.553411 DTS:7,DELTA:10420093,eLAT:6033683;

where,

DTS Decoding time stamp of frame in the timebase
transmitted to libXcoder

DELTA Frame period between this frame and previous frame in
nanoseconds

eLAT HW encoder latency for frame of this DTS in
nanoseconds

NETINT © 2024 Page 203 of 228

" NETINT
Quadra Integration & Programming Guide

13.2.10 Measure Latency

Parse the output log file to collect the eLAT time stamps.

cat output-y2h-0-0-0.log | sed 's/;/ /g' | grep "eLAT:" | cut -
d"," -f3 | sed 's/eLAT:/ /g'> encoder-out time-y2h-0-0-0.log

Collate the parsed eLAT data to a csv file.
The parsed data will be as sample below:

5511326
5629519
5670137
5658198
5642386
5939394
6033683

Calculate the eLAT / 1000000 to get the latency msec.

NETINT © 2024 Page 204 of 228

¢ NETINT
Quadra Integration & Programming Guide

13.2.11 Using ffmpeg-debug_ts

This method can be used for collecting latency measurement for T408 and any 3« party GPU like
Nvidia or AMD.

1. Run ffmpeg command to perform encoding operation. Use -c:v parameter to specify video
encoder to use like h264 _ni_quadra_enc or h265_ni_quadra_enc for NETINT encoder.

T408 example:

ffmpeg -y -nostdin -hide banner -vsync 0 -debug ts -stream loop 1
-f rawvideo -pix fmt yuv420p -s:v 1920x1080 -r 25 -i
/mnt/ramdisk/dinner 1920x1080p30 300 br7500 b3 B265d.yuv -c:v
h265 ni quadra enc -enc 0 -xcoder-params
gopPresetIdx=3:1lowDelay=1:RcEnable=1:bitrate=4000000 -f null -
2>&1 |ts '"%.s' > output-y2h-0-0-0.log

The output log file, for T408 as example, will have extra log messages as follows.

1642199011.985473 muxer <- type:video pkt pts:1 pkt pts time:0.04
pkt dts:-6 pkt dts time:-0.24 size:964

1642199011.987290 demuxer -> ist index:0 type:video

next dts:80000 next dts time:0.08 next pts:80000

next pts time:0.08 pkt pts:2 pkt pts time:0.08 pkt dts:2

pkt dts time:0.08 off:0 off time:0

1642199011.987346 demuxer+ffmpeg -> ist index:0 type:video

pkt pts:2 pkt pts time:0.08 pkt dts:2 pkt dts time:0.08 off:0
off time:0

1642199011.987362 decoder —-> ist index:0 type:video frame pts:2
frame pts time:0.08 best effort ts:2 best effort ts time:0.08
keyframe:1 frame type:1 time base:1/25

1642199011.987376 filter -> pts:2 pts time:0.08 exact:2.000008
time base:1/25

1642199011.987390 encoder <- type:video frame pts:2
frame pts time:0.08 time base:1/25

1642199011.993528 encoder -> type:video pkt pts:2

pkt pts time:0.08 pkt dts:-5 pkt dts time:-0.2
1642199011.993600 Last message repeated 1 times

2] Filter and record latency data from output log

cat output-y2h-0-0-0.log | grep "encoder <-" | cut -d" " -fl1 >
encoder-in time-0-0.log && cat output-Stag.log | grep "encoder -
>" | cut -d" " -fl > encoder-out time-0-0-0.log

NETINT © 2024 Page 205 of 228

Quadra Integration & Programming Guide

3] Collate the encoder in time and encoder out time stamps to a csv file.

Sample encoder in times:

1642199011.987390
1642199011.997031
1642199012.007143
1642199012.015154
1642199012.025613
1642199012.035669
1642199012.043303
1642199012.053758

Sample encoder out times:

1642199011.993528
1642199012.003550
1642199012.013914
1642199012.021652
1642199012.032136
1642199012.042110
1642199012.049788
1642199012.060334

" NETINT

4] Calculate the output log encoder out and encoder in time stamps diff * 1000 to get the

latency msec.

NETINT © 2024

Page 206 of 228

" NETINT
Quadra Integration & Programming Guide

14GStreamer NETINT Plugins

In the Quadra release V4.7 and onwards, NETINT provide one version of GStreamer 1.22 support
for Quadra transcode and filters.

14.1 Gstreamer-1.22.2

Based on the gstreamer-1.22.2, the plugins directly use the NETINT libxcoder interface.

14.1.1 Decoding

The list of gstreamer-1.22.0 NETINT command options for decoding can be shown with this
command:

‘gst-inspect-l.o --plugin niquadra | grep decoder

The result of <decoder name> is as following:

® niquadrah264dec: Netint NIQUADRA H264 decoder
niquadrah265dec: Netint NIQUADRA H265 decoder
niquadrajpegdec: Netint NIQUADRA JPEG decoder
niquadravp9dec: Netint NIQUADRA VP9 decoder

Get more details by following command:

gst-inspect-1.0 <decoder name>

Example:

gst-inspect-1.0 niquadrah264dec

NETINT © 2024 Page 207 of 228

" NETINT
Quadra Integration & Programming Guide

14.1.2 Encoding

The list of gstreamer-1.22.0 NETINT command options for decoding can be shown with this
command:

‘gst-inspect-l.o --plugin niquadra | grep encoder

The result of <encoder name> is as following:

niquadraavlenc: Netint QUADRA AV1 encoder
niquadrah264enc: Netint QUADRA H264 encoder
niquadrah265enc: Netint QUADRA H265 encoder
niquadrajpegenc: Netint QUADRA JPEG encoder

Get more details by following command:

gst-inspect-1.0 <encoder name>

Example:

gst-inspect-1.0 niquadrah264enc

NETINT © 2024 Page 208 of 228

Quadra Integration & Programming Guide

14.1.3 Filters

The list of gstreamer-1.22.2 NETINT command options for filters is as following:

niquadrabgr: NIBGR Netint element

niquadracrop: NICROP Netint element
niquadradrawbox: NIDRAWBOX Netint element
niquadrahwdownload: HWDownload Netint element
niquadrahwupload: HWUpload Netint element
niquadraoverlay: Overlay NETINT element
niquadrapad: NIPAD Netint element

niquadraroi: NIROI Netint element

niquadrarotate: NIROTATE Netint element
niquadrascale: NISCALE Netint element

niquadrastack: Stack NETINT element

NETINT © 2024

" NETINT

Page 209 of 228

" NETINT
Quadra Integration & Programming Guide

14.1.4 Known issues.

The following is a complete list of all known issues.

1. Gstreamer with NETINT encoding produces different results from FFmpeg

The FFmpeg encoder does not contain the aspect ratio in VUI by default. Gstreamer will add an
aspect ratio in the VUI with the default value ”1/1”. See the below pipeline for an example.
Change the default value by using the pixel-aspect-ratio property.

$ gst-launch-1.0 filesrc
location=/opt/work/FFmpegXcoder/libxcoder/test/akiyo_352x288p25.yuv ! videoparse
width=352 height=288 format=i420 framerate=25/1 pixel-aspect-ratio=1/2 !
niquadrah265enc ! filesink location="/aki-gstreamer-enc-ni.265

The FFmpeg encoder does not contain any color description in the VUI by default. If it is not
explicitly specified choose a default colorimetry for GStreamer. The default colorimetry will be
different for different resolutions. The test video is 355x288 which is SD, so the first BT601 is
chosen. See the pipeline example below, this overwrites the default value by adding “video/x-
raw,colorimetry=bt709”

$ gst-launch-1.0 filesrc
location=/opt/work/FFmpegXcoder/libxcoder/test/akiyo_352x288p25.yuv ! videoparse
width=352 height=288 format=i420 framerate=25/1 ! video/x-raw,colorimetry=bt709 !
niquadrah265enc ! filesink location="/aki-gstreamer-enc-ni.265

2. Gstreamer will not support wmv containers with h264 format

3.Add limit to the processing speed of Gstreamer for 8k 10bit input video

Due to the limited memory pool size on the firmware, the processing speed of the filters with
multiple HW frame inputs like overlay/xstack is generally controlled, especially for high
resolution like 8k-10bit input video. For example we can set the property “max-size-buffers” and
“max-size-bytes” for queue element to control the processing speed for the following test
command:

$ gst-launch-1.0 filesrc location=/home/test/Shanghai_7680x4320p30_450_10bit.h264 !
h264parse ! niquadrah264dec xcoder-params="'out=hw' dec=0 ! niquadraoverlay x=0 y=0
name=overlay ! tee name=t ! queue max-size-buffers=1 max-size-bytes=663552000 !
niquadrah264enc enc=0 ! h264parse ! filesink async=false location=/home/test/test1.h264 t. !
gqueue max-size-buffers=1 max-size-bytes=663552000 ! niquadrascale width=959 height=539 !
niquadrah264enc enc=0 ! h264parse ! filesink async=false location=/home/test/test2.h264 t. !
gqueue max-size-buffers=1 max-size-bytes=663552000 ! niquadrascale width=480 height=270 !
niquadrah264enc enc=0 ! h264parse ! filesink async=false location=/home/test/test3.h264
filesrc location=/home/test/Crowdrun_3840x2160p30_300.h264 ! h264parse !

NETINT © 2024 Page 210 of 228

" NETINT
Quadra Integration & Programming Guide

niquadrah264dec xcoder-params="'out=hw' dec=0 ! niquadrascale width=960 height=540 !
overlay.

If the limited isn’t added, this test case will report “insufficient resource” issue because of
insufficient memory.

4. Decoder parameters semiplaner is not available.
The semiplaner change the output pixel format of YUV, the decoder cannot change the pixel

format on caps now, will support it on future versions.

5. GStreamer can’t produce an IVF container with AV1 codec support.

NETINT © 2024 Page 211 of 228

" NETINT
Quadra Integration & Programming Guide

14.1.5 Supported Features of Gstreamer

Gstreamer is supported on Linux, Windows, Android and MacOS with version 1.22.x. This version
has been fully validated for Linux.

NETINT © 2024 Page 212 of 228

Quadra Integration & Programming Guide

The following table lists all features supported on gstreamer.

" NETINT

Feature

N
N

Decoder

H264

H265

VP9

JPEG

Encoder

H264

H265

AV1

JPEG

S I W P P I P P I

Decoder
Xcoder

All xcoder parameters

(semi-planer and multi-output is
ot supported)

> X

Encoder

dolbyVisionProfile

Xcoder

Others xcoder Parameters

Filters

ni_quadra_scale

ni_quadra_overlay

ni_quadra_split

(No need for gstreamer)

ni_quadra_crop

ni_quadra_pad

ni_gquadra_hwupload

ni_quadra_roi

ni_quadra_bg

ni_quadra_xstack

ni_quadra_rotate

ni_quadra_drawbox

<l Xl & <<

ni_quadra_drawtext

X

ni_quadra_ai_pre

X

ni_quadra_delogo

X

ni_quadra_merge

X

Advance

HDR

d

ROI

Feature

Closed Captions

Rate Control

User Data Unregistered SEI Passthrough

IDR Frame Forcing

Others

AV1 tile

XXl e | 2| <

HEVC tile

NETINT © 2024

Page 213 of 228

" NETINT
Quadra Integration & Programming Guide

15 Resource Management

A resource management mechanism is in place on the NETINT server for the management of
video transcoding resources. It provides query/allocation of transcoding resources in the form of
utility programs. A C language library and API are ready to integrate with third party application
software packages. such as FFmpeg.

15.1 Transcoding Resources

The transcoding resources on a host are hardware transcoder cards and decoder/encoder chips
inside those cards. Each decoder/encoder has a certain processing capacity that can handle a
limited number of video streams based on resolution and frame rate. The resource
management’s tasks are to present inventory and status on available resources and enable
resource distribution. User applications can build their own resource management schemes on
top of this resource pool or leave this task to the NETINT server for some default simplified
resource distribution scheme.

15.2 Device Load and Software Transcoding Instance

At system run time, device firmware maintains a value for each hardware codec representing the
processing load currently on the codec. This number is obtained by accumulating clock cycles
spent decoding, encoding, and filtering streams and dividing it by the maximum number of
cycles available during a period of time. This reflects how heavy the codec is being used for the
stream processing. This is called the real load.

For each stream being decoded or encoded, a software decoding or encoding instance is created
on the hardware codec. The number of active software transcoding instances on a hardware
instance is another measure of load on transcoding resources.

The firmware also tracks the model load for each card. The model load is calculated by
width*height*FPS. The model load will be increased from the firmware side once an instance is
created successfully, either for encoder or decoder. When an instance is closed successfully the
model load will be deducted as well.

NETINT © 2024 Page 214 of 228

" NETINT
Quadra Integration & Programming Guide

15.3 Resource Distribution Strategy

Users may query at run time the load numbers and create resources on specific devices by
specifying the device ID directly for encoders and decoders as well as for ni_quadra_hwupload
and ni_quadra_roi. Other Netint filters which use hardware frames are always collocated with
their input.

See also APPS548 Codensity Quadra YUVbypass Application Note to learn more about hardware
frames.

If the device ID is not specified, then decoders and encoders will be created on the least loaded
device, either as modeled (by default), or by real load. If the input to the encoder is a hardware
frame it will be collocated with its input.

15.3.1 Examples

The following example allocates the H.264 decoder to the least model load device by default.

ffmpeg -c:v h264_ni_quadra_dec -i input.264 output.yuv

The following example allocates the decoder to device 0 and the encoder to device 1. This is not
optimal since the decoder YUV frames must be transferred from device 0 to the host and then
back to device 1. Note that the use of hardware frames does not help when the encoder and
decoder are on different devices.

ffmpeg -c:v h264_ni_quadra_dec -dec 0 -i input.264 -c:v h265_ni_quadra_enc -enc 1
output.265

NETINT © 2024 Page 215 of 228

" NETINT
Quadra Integration & Programming Guide

15.4 NETINT Command-Line Interface (CLI)

A few utility programs are provided to list and monitor resource usage. Running the utility
Jusr/local/bin/ni_rsrc_list produces results showing capabilities of cards on the host. Another
utility is /usr/local/bin/ni_rsrc_mon, that actively monitors the resource usage on the server and
initializes resources. A sample output is shown below:

ni rsrc mon

NI resource init'd already
khkhkhkkhkhkhkhkkhkkhkhkhkhkhkhkhkhrhkkhkhkhhkhhkkhkhkhrhkhkkhhkhhhkkhhkhrhkkhkkhkhkhrhkhkhkhxhk*k

1 devices retrieved from current pool at start up

Wed Feb 9 18:30:12 2022 up 00:00:00 v065R1A00

Num decoders: 1

INDEX LOAD MODEL_LOAD INST MEM SHARE_MEM PZP_MEM DEVICE

0 0 0 0 0 0 0 /dev/nvmeOnl
Num encoders: 1

INDEX LOAD MODEL LOAD INST MEM SHARE MEM PZP_MEM DEVICE

0 0 0 0 0 0 0 /dev/nvmeOnl
Num scalers: 1

INDEX LOAD MODEL_LOAD INST MEM SHARE_MEM PZP_MEM DEVICE

0 0 0 0 0 0 0 /dev/nvmeOnl
Num AIs: 1

INDEX LOAD MODEL LOAD INST MEM SHARE MEM PZP_MEM DEVICE

0 0 0 0 0 0 0 /dev/nvmeOnl

hhkrkhkhkhk kA hkkrhhkhhkhkrhkhkhhhkhhkrhkhkhkhhkrhkrhhkrhkkhkrhkkhkhkhkhkxkkx

The number of devices having encoders, decoders, scalers (2D Engines), and Al engines are
listed.

To see the number of uploaders and firmware/system load by subsystem, try the full output
format.

The simple output format shows the maximum firmware/system load amongst the subsystems
on the Quadra device.

NETINT © 2024 Page 216 of 228

" NETINT
Quadra Integration & Programming Guide

A help text with description of how to use the program can be accessed with the command:

-n

NETINT © 2024

Specify reporting interval in one second interval. If 0 or no selection, report only
once.

Default: 0
Specify if refresh devices on host in each monitor interval.

Default: 1

Output format. [text, simple, full, json, json1, extral.

Default: text

Dump firmware logs to current directory. Default: O(not dump fw log).
Specify to dump which card's firmware logs.

Default: -1(dump fw log of all cards).

Initialize Quadra device regardless firmware release version to libxcoder
version compatibility.

Default: only init cards with compatible firmware version.

Set timeout time in seconds for device polling. Program will exit with failure if
timeout is reached without finding at least one device. If 0 or no selection, poll
indefinitely until a Quadra device is found.

Default: 0
Skip init_rsrc.

Set loglevel of libxcoder API.

[none, fatal, error, info, debug, trace]
Default: info

Open this help message.

Print version info.

Page 217 of 228

" NETINT
Quadra Integration & Programming Guide

Reporting columns for text output format
INDEX index number used by resource manager to identify the resource

LOAD realtime load given in percentage. This value is max of VPU and FW load
reported in full output format

MODEL _LOAD estimated load given in percentage based on framerate and resolution
INST number of job instances

MEM usage of memory given in percentage by the subsystem

SHARE_MEM usage of memory shared across subsystems on the same device
P2P_MEM usage of memory by P2P

DEVICE path to NVMe block device file handle

Additional reporting columns for full output format

VPU same as LOAD

FW system load

TOTAL same as MEM

CRITICAL usage of memory considered critical
L_FL2V last ran firmware loader 2 version
N_FL2V nor flash firmware loader 2 version
FR current firmware revision

N_FR nor flash firmware revision

The INST column also shows the maximum supported number of job instances in the form of
INST/MAX_INST.

Reporting columns for extra output format
TEMP realtime temperature given in degrees Celsius

DEVICE path to NVMe block device file handle

NETINT © 2024 Page 218 of 228

" NETINT
Quadra Integration & Programming Guide

15.5 NVMe SMART Log

To obtain the Quadra device NVMe SMART log, use the following command:

sudo nvme smart-log /dev/nvme@

Here is an example of the output:

Smart Log for NVME device:nvme® namespace-id:ffffffff
critical_warning : 0

temperature : 38 C
available_spare . 100%
available_spare_threshold . 20%
percentage_used y
data_units_read
data_units_written
host_read_commands
host_write_commands
controller_busy time
power_cycles
power_on_hours
unsafe_shutdowns
media_errors

num_err_log entries
Warning Temperature Time :
Critical Composite Temperature Time :
Temperature Sensor 1

Temperature Sensor 2

Thermal Management T1 Trans Count
Thermal Management T2 Trans Count
Thermal Management T1 Total Time
Thermal Management T2 Total Time

S

WOOOOODOOODODOOOOO

= 00
ol e

OO0 P

Below is an explanation of the sensors :

Temperature Sensor 1 represents the board temperature.
Temperature Sensor 2 represents the on die temperature.

temperature represents the composite temperature.

When determining throttling behavior, the composite temperature is used.

NETINT © 2024 Page 219 of 228

" NETINT
Quadra Integration & Programming Guide

15.6 Device Temperature

Quadra uses temperature sensors to protect the device from excessive temperature.

15.6.1 Warning Temperature and Throttling

Throttling will be activated once the device composite temperature reaches or exceeds 70°C.
Throttling will be deactivated once the composite temperature drops again below 70°C.

Device performance will be reduced during throttling. The following component clock speeds
will be reduced during throttling

e CPU

e Encoder Engine
e Decoder Engine
e 2D Engine/Scaler

Note that ni_rsrc_mon LOAD values may appear doubled or halved for a transient period after
switching between throttling and non-throttling states due to pre-throttle/unthrottle load stats
being measured against current clock.

15.6.2 Critical Temperature and Device Reset

To protect the Quadra device, if the composite temperature of 80°C or more is detected, the
device will reset. This will result in a loss of all current workloads.

NETINT © 2024 Page 220 of 228

" NETINT
Quadra Integration & Programming Guide

15.7 Resource Pool Management

A number of files with NI prefix names are created (e.g. in folder /dev/shm on Linux) during
resource initialization running either init_rsrc or ni_rsrc_mon for the very first time after system
reboot. They are used by libxcoder and the ni_rsrc_mon utility to identify all Quadra cards in the
system.

The host resource pool management starts with utility program (init_rsrc, or ni_rsrc_mon)
scanning the available NETINT transcoder cards on the host. It collects NVMe devices by looking
at /dev/nvmeX device files and issuing NVMe identify requests. It checks the response and
identifies NETINT devices by matching with NETINT vendor ID 0x1D82. It further identifies
transcoder cards by checking the vendor specific data section for a flag named xcoder_support.
T4xx card sets this value to 1, and Quadra card 2. All other NVMe devices with this value set to 0
would be considered a non NETINT transcoder device and ignored.

When the NETINT Quadra cards are identified, their information including character device file
name (/dev/nvmeX), block device file name (/dev/nvmeXnY) and capabilities numbers are
retrieved, records and locks (referred to as host resource pool files) are created and saved at
/dev/shm on Linux — a temporary file storage file system that uses RAM for the backing store,
and functions as a shared memory for applications to access for transcode resource allocation.
On Windows and Android systems the host resource pool files will be generated similarly though
the actual file location and mechanism may be different.

A utility program ni_rsrc_list can be run to display the information of cards available on that
host. An additional command line argument, -a, when specified, displays general information
about cards that were not initialized by init_rsrc.

A utility program ni_rsrc_mon is usually run to print out the status of cards on a host such as
load, number of active instance and memory usage. A continued running of this program also
keeps updating the host resource pool files in the background, that is cards pulled from or
inserted into the system will be detected by this program and host resource records will be
updated accordingly.

When an application needs to run a transcoding task, it can either explicitly designate a card to
use by its index or its block device name, as presented by ni_rsrc_list, or leave it to the resource
management to automatically pick a card with the least load to accomplish load balancing on a
host. This is done in the transcode session opening.

NETINT © 2024 Page 221 of 228

" NETINT
Quadra Integration & Programming Guide

15.8 Thread Management and Keep Alive

Note that each opened NetInt transcoding session maintains a keep-alive thread. This thread
sends a regular heartbeat from the libxcoder int the host application, to the firmware running
on the transcoding card. When integrating the libxcoder into any third party frameworks, care
should be taken to ensure that the transcoding sessions opening thread (and the keep-alive
thread spawn by it), shall have the fairness of thread scheduling (e.g. a round-robin scheduling
policy). This will allow the heartbeat to be sent within the specified time interval, thus keeping
the channel open. For Linux macos and Android platforms, change the name of this thread to
KAT+hw_id+session_ id, such as hw_id=0, session_id=0x3ef, thread name is KATO003ef.

If a session heartbeat is not been received by the firmware within the dedicated timeframe,
then the session will be terminated.

NETINT © 2024 Page 222 of 228

" NETINT
Quadra Integration & Programming Guide

16Debugging

16.1 NETINT Codec Library Debug Log

The NETINT Codec Library (including libxcoder) provides full logging of event sequences and
information. This includes run time timestamps, for troubleshooting and debugging purposes.

When using the NETINT Codec Library, libxcoder uses the same logging level as specified by
FFmpeg’s command line option “-loglevel”. Please reference the FFmpeg manual page for
details. The default level is “-loglevel none” and the highest level is “-loglevel trace”

If your application imports libxcoder directly, the logging level may be set by importing ni_utils.h
and calling the ni_log_set_level() function. Please refer to the code excerpt below from ni_util.h
for enumerations and functions relevant to libxcoder logging.

typedef enum

{
NI LOG NONE =
NI_LOG FATAL =
NI_LOG ERROR =
NI LOG INFO =
NI LOG DEBUG =
NI LOG_TRACE =

} ni log level t;

~ 0~

~

~

g w e O
~

void ni log set level(ni log level t level);
ni log level t ni log get level (void);
ni log level t ff to ni log level(int fflog level);

NETINT © 2024 Page 223 of 228

" NETINT
Quadra Integration & Programming Guide

17 Deprecated Parameters

This section lists all the deprecated parameters in Quadra’s SDK.

NETINT strongly recommends that ALL deprecated parameters are no longer used, and that
their replacement parameters are used instead. Each deprecated parameter has a replacement
parameter or a description of a replacement strategy listed next to it.

Please discuss with your NETINT support representative, or a member of our NETINT FAE team if
you require any further guidance on any parameters.

17.1 Backward Compatibility

All Quadra releases from 4.0.0 guarantee backward compatibility.

Backward compatibility means that any application code (or command lines), developed for
release 4.0.0 and onwards, will work with any other subsequent releases (for example 4.4.0).
Any firmware from 4.0.0 and onwards will work with any software component from 4.0.0 and
onwards, and vice versa.

Parameters are deprecated as opposed to being removed to ensure that each release maintains
this backward compatibility for all users. Therefore all deprecated parameters will always
continue to work, with any future releases. No deprecated parameters ever break backward
compatibility.

17.2 List of Deprecated Parameters

Deprecated Parameter Name : MaxFrameSize
Replacement Parameter Name : MaxFrameSize_Bytes
See section : Encoding Parameters

Notes
MaxFrameSize has been deprecated and should not be used.

Instead use the more explicit maxFrameSize_Bytes parameter which is equivalent of

maxFrameSize. Using the new maxFrameSize_Bytes parameter will also make the Quadra
application code easier to understand.

NETINT © 2024 Page 224 of 228

" NETINT
Quadra Integration & Programming Guide

18 Troubleshooting

The following section lists some ideas for troubleshooting the device or the host side software.

NETINT'’s support team are always here to provide help and support so please ask if needed, but this list
could also help to solve an issue quickly.

18.1 Performance Is Lower than expected

Performance can be affected by the following, please check to make sure everything is working as
expected.

1.

2.

Make sure the device is running at PCle Gen 4 speeds
Make sure the device has the correct firmware running on it
Make sure the software is installed correctly on the host

Make sure the device is not throttling. Throttling occurs when the device is too hot. Adequate
cooling is needed, and the higher the load on the device the hotter the device will get over time.

See the section on Throttling for more information.

Talk to your NETINT representative for information on cooling solutions.

NETINT © 2024 Page 225 of 228

" NETINT
Quadra Integration & Programming Guide

18.2 Compilation Failures

If the host side software, or you application is failing to compile/link, see if any of the listed help can
resolve your issue.

18.2.1 FFMpeg Compilation fails with Quadra and CUDA

Some customers have tried to compile the latest CUDA (version 12) with FFMpeg 4.4 and Quadra.

The command for this is expected to be

bash build_ffmpeg.sh --quadra --ffnvcodec

The default for FFmpeg compilation is for it to use the Shader Modules “30” — hence the compute_30
unsupported GPU architecture message. Running the above command may result in this failure

[root@junk FFmpeg]# bash build ffmpeg.sh --quadra -ffnvcodec

nvcc -gencode arch=compute 30,code=sm 30 -02 -m64 -ptx -c -o
/tmp/ffconf.lHNCpvwM/test.o /tmp/ffconf.lHNCpvwM/test.cu

nvce fatal : Unsupported gpu architecture 'compute 30'

ERROR: failed checking for nvcc.

To tell FFmpeg 4.4 to compile for a more recent and supported Shader Model, here for example the NVidia
Turing architecture (SM75), set the following custom flags

bash build ffmpeg.sh --quadra --ffnvcodec --custom flags '--nvccflags=-
gencode=arch=compute 75, code=compute 75'

NETINT © 2024 Page 226 of 228

Quadra Integration & Programming Guide

19Abbreviations

Al
API
AUD
AV
AVl
CABAC
CBR
CPU
CRF
CTB
Cu
DMA
DSP
EOF
FPS
GOP
HDR
HLG

HRD

Mbps
MB
PPS

P2pP

NETINT © 2024

Artificial Intelligence

Application Programming Interface
Access Unit Delimiters

Audio Video

Alliance Open Media Video 1 Codec
Context Adaptive Binary Arithmetic Coding
Constant Bit Rate

Central Processing Unit

Constant Rate Factor

Coding Tree Block

Coding Unit

Direct Memory Access

Digital Signal Processing

End Of File

Frames Per Second

Group Of Pictures

High Dynamic Range

Hybrid Log Gamma

Hypothetical Reference Decoder
Inference Engine

Mega Bit per second

Macroblock

Picture Parameter Set

Peer-to-Peer DMA

" NETINT

Page 227 of 228

" NETINT
Quadra Integration & Programming Guide

QP Quantization Parameter
RGB Red Green Blue

RGBA Red Green Blue Alpha

RDO Rate Distortion Optimization
ROI Region of interest

SEI Supplemental Enhancement Information
SPS Sequence Parameter Set
VBR Variable Bit Rate

VCL Video Coding Layer

VPS Video Parameter Set

VUl Video Usability Information

NETINT © 2024 Page 228 of 228

